Résumé : Chirality is the property of objects, including molecules, which are not superimposable on their materialized mirror image. Chiral molecules are omnipresent in living organisms and the constituents of biological macromolecules (proteins and nucleic acids) are chiral. Amino-acids (constituting proteins), ribose and 2-deoxy-ribose (the only chiral constituent of RNA and DNA nucleotides respectively) are furthermore generally present in living organisms only under one of their enantiomeric forms. This is referred to as the homochirality of the living world. The origin of this homochirality is still unexplained, even if many partial scenarios have been proposed in the literature. All scenarios involve the creation of a small enantiomeric excess for certain molecules, amplification of this excess and chirality transfer to other chiral molecules. The origin of homochirality on Earth is closely related to the origin of life, and is currently supposed to have preceded life. As no-one will ever be able to directly observe the phenomena which lead to homochirality, and life, on our planet, the only scientific approach to try and help explain how this occurred is to build scenarios, and test them taking into account all available information on the physical and chemical conditions on the primitive Earth (Earth before life appeared). In our work, we investigated three scenarios related to the origin of homochirality on Earth. One of these scenarios also relates to a very precise step of the origin of life: the selection of beta-d-ribofuranose as component of RNA nucleotides.

Enantiomeric excesses (up to 15 %) of alpha-methylated alpha-amino-acids have been detected in meteorites which fell on Earth during the 20th century. No enantiomeric excess is detected for the corresponding alpha-hydroxy-acids in the same meteoritic samples and small (2% at most) or no enantiomeric excesses have been measured for non-methylated alpha-amino-acids. In the first part of our work, we investigated if photolysis by circularly polarized light (CPL) in space could be at the origin of the presence (or absence) of an enantiomeric excess for these compounds. Experiments to reproduce UV-CPL photolysis are difficult to undertake: they require high-energy circularly polarized photons, hence the use of a synchrotron. In our work, we used quantum mechanical calculations to obtain the electronic circular dichroïsm (ECD) spectra of two -methylated -amino-acids, their corresponding alpha-hydroxy-acids and one non-methylated alpha-amino-acid. Differences are observed between these spectra, and we propose a scenario to explain the experimental measurements reported here above: the enantioselective photolysis, in the gas phase at low temperatures (20K at most), of the alpha-amino-acids by UV-CPL with lambda>210 nm. Under these conditions no photolysis of the alpha-hydroxy-acids would occur. This scenario concerns the first step in the origin of homochirality on Earth: the creation of a small enantiomeric excess for some chiral molecules.

The second scenario that we investigated relates to the enantiomeric amplification step of the origin of homochirality on Earth, for which the role of the alpha-amino-acid serine has been suggested in the literature. Serine clusters have been observed in the gas phase by mass spectrometry. Among these clusters the octamer has been shown to be a magic number cluster and to have a preference for homochirality. An enantiomeric amplification via cycles of formation and dissociation of the octamer has been suggested. No complete scenario has however been proposed in the literature to explain how this could have occurred on the primitive Earth, but any scenario would most probably include an aqueous phase. We aimed at determining if the homochiral preference of serine octamers also exists in solution and therefore we first investigated if serine octamers exist in solution. For this study, we used nuclear magnetic resonance and infrared spectroscopies, which are well-adapted to the study of molecular assemblies in solution. We were able to demonstrate that most probably serine clusters are not present in solution, and if they are it could only be in extremely low concentration. The scenario suggested in the literature is discussed in the light of our results and of literature data on serine clusters.

As last hypothesis, we investigated a possible scenario for the selection of beta-d-ribofuranose as component of RNA nucleotides. The currently known prebiotic synthesis pathways to ribose also lead to the formation of many other carbohydrates, and ribose is only a minor product of these syntheses. Our hypothesis is that beta-d-ribofuranose could have been selected through favorable interactions with alpha-amino-acids already present on the primitive Earth under one enantiomeric form. Indeed, it is plausible that a peptidic world emerged before the presence of RNA and that homochiral alpha-amino-acids were present on Earth when RNA was synthesized. Under this hypothesis, we investigated the role that alpha-l-amino-acids could have played in the selection of alpha-d-ribofuranose as component of RNA nucleotides. This work is related to the last step of the origin of homochirality: chirality transfer. Our scenario was investigated via nuclear magnetic resonance studies of the interaction between alpha-amino-acids and carbohydrates. We were able to show that, in the systems that we studied, when an interaction occurs it is very weak (affinity constant less than 1M−1) and non enantioselective. Our results most probably discard the role that alpha-amino-acids alone could have played in the selection of beta-d-ribofuranose as component of RNA nucleotides, but does not discard the role that peptides could have played in this selection.