Résumé : The study presented in this dissertation concerns the evaporation, in normal ambient conditions, of sessile droplets (pinned and freely receding) of various HFE liquids (instead of the widely used water), which are considered so far as environmentally friendly and are often used as heat-transfer fluids in thermal management applications. They are pure perfectly-wetting and volatile liquids with low thermal conductivity and high vapor density. These properties affect in their own way many aspects concerning droplet evaporation such as the evaporation-induced contact angles, evaporation rate of a droplet, contact line pinning and Marangoni flow, all of which are treated in the present dissertation.

In general, the thesis starts with a general introduction including but not limited to sessile droplets (Chapter 1). In Chapter 2 we provide a general overview of capillarity-related concepts. Then, in Chapter 3 we present the interferometric setup, along with the liquids and the substrate that is used in the experiments, and also explain the reasons why this particular method is chosen. In Chapter 4 we address, among others, the issue of evaporation-induced contact angles under complete wetting conditions. The behavior of the global evaporation rate is also examined here, whereas in Chapter 5 we discuss the influence of thermocapillary stresses on the shape of strongly evaporating droplets. Finally, before concluding in Chapter 7, we address in Chapter 6 the still open question of the influence of non-equilibrium effects, such as evaporation, on the contact-line pinning at a sharp edge, a phenomenon usually described in the framework of equilibrium thermodynamics. The experimental results obtained are also compared with the predictions of existing theoretical models giving rise to interesting conclusions and promising perspectives for future research.