Article révisé par les pairs
Résumé : The low-lying collective states in Sn isotopes are studied by a five-dimensional collective Hamiltonian with parameters determined from the triaxial relativistic mean-field calculations using the PC-PK1 energy density functional. The systematics for both the excitation energies of 21+ states and B(E2;01+→21+) values are reproduced rather well, in particular, the enhanced E2 transitions in the neutron-deficient Sn isotopes with N<66. We show that the gradual degeneracy of neutron levels 1g 7/2 and 2d 5/2 around the Fermi surface leads to the increase of level density and consequently the enhanced paring correlations from N=66 to 58. It provokes a large quadrupole shape fluctuation around the spherical shape, and leads to an enhanced collectivity in the isotopes around N=58. © 2012 Elsevier B.V.