Article révisé par les pairs
Résumé : We develop a rate equation model describing the polarization switching phenomenon in vertical-cavity surface-emitting lasers taking into account the major underlying physical origins of this behavior: spin flip relaxation effects, temperature variations and both residual strain in the quantum well and stresses externally applied to the device. To include effects of temperature and stress or strain, we describe the optical material properties of the quantum well by way of a recently derived analytical approximation for the optical susceptibility of uniaxially stressed quantum-well lasers at low temperatures. We review the influence of temperature and stress on the polarization-dependent gain and the linewidth enhancement factor. Combining this information with cavity anisotropies and spin carrier dynamics, we present a model that provides a unified overview of the polarization switching phenomenon. By way of a linear stability analysis, the polarization mode stability is discussed and compared with earlier experimental results.