Résumé : Molecular dynamics and Monte Carlo simulations were carried out for xenon atoms dissolved in liquid benzene in order to study the quadrupolar relaxation mechanism of the xenon-131 nucleus. We confirm that a proper description of the relaxation is obtained by taking into account the quadrupole moment of benzene molecules. In contrast to the Xe-water system, the cross-correlation contribution to the electric field gradient (experienced by the Xe nucleus) is negligible in benzene, and the time correlation function of the total electric field gradient shows a relatively smooth decay. Several molecular motions take part in this decay, but not with the same efficiency. The major contribution can be attributed to the rotation of the benzene molecules around their C 2 axes. The adequacy of the Sternheimer model for quadrupolar interactions is confirmed with ab initio calculations. Some methodological aspects of simulations are also discussed, such as the use of a termination function to treat the electrostatic interactions and the effect of the xenon interaction parameters on the simulated relaxation rate. © 1993 American Institute of Physics.