Résumé : Rapid geographic range expansions can have dramatic effects on the distribution of genetic diversity, both within and among populations. Based on field records collected over the past two decades in Western Europe, we report on the rapid geographic range expansion in Colletes hederae, a solitary bee species. To characterize how this expansion shaped the distribution of genetic diversity within and among populations, we performed a genetic analysis based on the sequencing of three nuclear loci (RNAp, CAD and WgL). We then simulated the evolution of DNA sequences under a spatially explicit model of coalescence to compare different hypotheses regarding the mode of colonization associated with this rapid expansion and to identify those that are most consistent with the observed molecular data. Our genetic analyses indicate that the range expansion was not associated with an important reduction in genetic diversity, even in the most recently colonized area in the United Kingdom. Moreover, little genetic differentiation was observed among populations. Our comparative analysis of simulated data sets indicates that the observed genetic data are more consistent with a demographic scenario involving relatively high migration rates than with a scenario based on a high reproduction rate associated with few migrants. In the light of these results, we discuss the factors that might have contributed to the rapid geographic range expansion of this pollen-specialist solitary bee species across Western Europe.