par De Troyer, André
Référence Journal of applied physiology (Bethesda, Md. : 1985), 112, 4, page (529-534)
Publication Publié, 2012-02
Article révisé par les pairs
Résumé : The diaphragm acting alone causes a cranial displacement of the lower ribs and a caudal displacement of the upper ribs. The respiratory effect of the lower rib displacement, however, is uncertain. In the present study, two sets of experiments were performed in dogs to assess this effect. In the first, all the inspiratory intercostal muscles were severed, so that the diaphragm was the only muscle active during inspiration, and the normal inspiratory cranial displacement of the lower ribs was suppressed at regular intervals. In the second experiment, the animals were given a muscle relaxant to abolish respiratory muscle activity, and external, cranially oriented forces were applied to the lower rib pairs to simulate the action of the diaphragm on these ribs. The data showed that 1) holding the lower ribs stationary during spontaneous, isolated diaphragm contraction had no effect on the change in lung volume during unimpeded inspiration and no effect on the fall in pleural pressure (Ppl) during occluded breaths; 2) the procedure, however, caused an increase in the caudal displacement of the upper ribs; and 3) pulling the lower rib pairs cranially induced a cranial displacement of the upper ribs and a small fall in Ppl. These observations indicate that the force applied on the lower ribs by the diaphragm during spontaneous contraction, acting through the interdependence of the ribs, is transmitted to the upper ribs and has an inspiratory effect on the lung. However, this effect is very small compared to that of the descent of the dome.