Article révisé par les pairs
Résumé : We propose an experimental scheme to simulate and detect the properties of time-reversal invariant topological insulators, using cold atoms trapped in one-dimensional bichromatic optical lattices. This system is described by a one-dimensional Aubry-Andre model with an additional SU(2) gauge structure, which captures the essential properties of a two-dimensional Z 2 topological insulator. We demonstrate that topologically protected edge states, with opposite spin orientations, can be pumped across the lattice by sweeping a laser phase adiabatically. This process is an elegant way to transfer topologically protected quantum states in a highly controllable environment. We discuss how density measurements could provide clear signatures of the topological phases emanating from our one-dimensional system. © 2012 American Physical Society.