Articles dans des revues avec comité de lecture (124)

  1. 32. Cohen-Rengifo, M., Moureaux, C., Dubois, P., & Flammang, P. (2017). Attachment capacity of the sea urchin Paracentrotus lividus in a range of seawater velocities in relation with test morphology and tube foot mechanical properties. Marine Biology, 164(4), 79. doi:10.1007/s00227-017-3114-0
  2. 33. Collard, M., Rastrick, S. P., Calosi, P., Demolder, Y., Dille, J., Findlay, H. S., Hall-Spencer, J. M., Milazzo, M., Widdicombe, S., Dehairs, F., & Dubois, P. (2016). The impact of ocean acidification and warming on the skeletal mechanical properties of the sea urchin Paracentrotus lividus from laboratory and field observations. ICES journal of marine science, 73, doi: 10.1093/icesjms/fsv018, 727-738. doi:10.1093/icesjms/fsv018
  3. 34. Michel, L., David, B., Dubois, P., Lepoint, G., & De Ridder, C. (2016). Trophic plasticity of Antarctic echinoids under contrasted environmental conditions. Polar biology, 39, 913-923.
  4. 35. Tsiresy, G., Preux, J., Lavitra, T., Dubois, P., Lepoint, G., & Eeckhaut, I. (2016). Phenology of farmed seaweed Kappaphycus alvarezii infestation by the parasitic epiphyte Polysiphonia sp. in Madagascar. Journal of applied phycology, 28(5), 2903-2914. doi:10.1007/s10811-016-0813-8
  5. 36. Moulin, L., Grosjean, P., Leblud, J., Batigny, A., Collard, M., & Dubois, P. (2015). Long-term mesocosms study of the effects of ocean acidification on growth and physiology of the sea urchin Echinometra mathaei. Marine environmental research, 103, 103-114. doi:10.1016/j.marenvres.2014.11.009
  6. 37. Collard, M., De Ridder, C., David, B., Dehairs, F., & Dubois, P. (2015). Could the acid–base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification? Global change biology, 21, 605-617. doi:10.1111/gcb.12735
  7. 38. Collard, M., Dubois, P., Dehairs, F., & Eeckhaut, I. (2014). Acid–base physiology response to ocean acidification of two ecologically and economically important holothuroids from contrasting habitats, Holothuria scabra and Holothuria parva. Environmental science and pollution research international, 21(23), 13602-13614. doi:10.1007/s11356-014-3259-z
  8. 39. Moulin, L., Grosjean, P., Leblud, J., Batigny, A., & Dubois, P. (2014). Impact of elevated pCO2 on acid-base regulation of the sea urchin Echinometra mathaei and its relation to resistance to ocean acidification: a study in mesocosms. Journal of experimental marine biology and ecology, 457, 97-104. doi:10.1016/j.jembe.2014.04.007
  9. 40. Gorzelak, P., Stolarski, J., Dery, A., Dubois, P., Escrig, S., & Meibom, A. (2014). Ultrascale and microscale growth dynamics of the cidaroid spine of Phyllacanthus imperialis revealed by 26Mg labeling and NanoSIMS isotopic imaging. Journal of morphology, 275(7), 788-796. doi:10.1002/jmor.20260
  10. 41. Dery, A., Guibourt, V., Catarino, A. A., Compère, P., & Dubois, P. (2014). Properties, morphogenesis and effect of acidification on spines of the cidaroid sea urchin Phyllacanthus imperialis. Invertebrate biology., 133, 188-199. doi:10.1111/ivb.12054
  11. 42. Dubois, P. (2014). The skeleton of postmetamorphic echinoderms in a changing world. Biological bulletin, 226, 223-236.
  12. 43. Collard, M., Dery, A., Dehairs, F., & Dubois, P. (2014). Euechinoidea and Cidaroidea respond differently to ocean acidification. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 174, 45-55. doi:10.1016/j.cbpa.2014.04.011

  13. << Précédent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Suivant >>