Communications publiées lors de congrès ou colloques nationaux et internationaux (25)

  1. 1. Henneaux, M., & Teitelboim, C. (2006). Electric-magnetic duality in gravity. In J. T. Liu, M. J. Duff, K. S. Stelle, & R. P. Woodard (Eds.), DESERFEST: A Celebration of the Life and Works of Stanley Deser (pp. 128-136) Singapore: World Scientific Publishing Co., Pte. Ltd.
  2. 2. Henneaux, M., Damour, T., & Nicolai, H. (2005). Billiard dynamics of Einstein-matter systems near a spacelike singularity. In A. Gomberoff & D. Marolf (Eds.), Lectures on Quantum Gravity (pp. 207-247). (Series of the Centro de Estudios Científicos). Springer US.
  3. 3. Henneaux, M., Boulanger, N., Damour, T., & Gualtieri, L. (2001). No consistent cross interactions for a collection of massless spin-2 fields. In A. Semikhatov, M. V. Vasiliev, & V. N. Zaikin (Eds.), Quantization, gauge theory and strings: Proceedings of the international conference dedicated to the memory of Professor Efim Fradkin: Vol. 2 (pp. 150-161) Moscow: Scientific World.
  4. 4. Henneaux, M., & Coussaert, O. (1998). Selfdual solutions of (2+1) Einstein gravity with a negative cosmological constant. In C. Teitelboim & J. Zanelli (Eds.), Black hole: twenty-five years after (pp. 25-39) River Edge, New Jersey: World Scientific Publishing Company, Incorporated.
  5. 5. Henneaux, M. (1997). Consistent interactions between gauge fields: the cohomological approach. In M. Henneaux, J. Krasil'shchik, & A. Vinogradov (Eds.), Secondary calculus and cohomological physics: Proceedings of a conference on Secondary calculus and cohomological physics (pp. 93-109). (Contemporary mathematics, 219). Providence, Rhode Island, USA: American Mathematical Society.
  6. 6. Henneaux, M. (1995). Algebraic approach to Yang-Mills theory. In M. Abe, N. Nakanishi, & I. Ojima (Eds.), BRS Symmetry: Proceedings of the International Symposium on the BRS Symmetry on the Occasion of Its 20th Anniversary (pp. 319-333). (Frontiers Science Series, 17). Tokyo, Japan: Universal Academy Press.
  7. 7. Henneaux, M. (1995). Cohomological methods in local field theory. In D. H. Tchrakian (Ed.), Topics in Quantum Field Theory: Modern methods in fundamental physics (pp. 162-172) Singapore: World Scientific.
  8. 8. Henneaux, M., & Coussaert, O. (1995). Non-existence of static multi-black-hole solutions in 2+1 dimensions. In J. M. Charap (Ed.), Geometry of Constrained Dynamical Systems (pp. 150-157). (Publications of the Newton Institute, 3). Cambridge, England: Cambridge University Press.
  9. 9. Barnich, G., Henneaux, M., & Tatar, R. (1994). Consistent interactions between gauge fields and local BRST cohomology: The example of Yang-Mills models. In F. Englert, M. Henneaux, & P. Spindel (Eds.), Proceedings of the Journées relativistes '93: Vol. 3 (pp. 139-144). (International journal of modern physics D, 1). Singapore: World Scientific Publishing.
  10. 10. Henneaux, M. (1994). Spacetime locality of the antifield formalism: general theorems illustrated by means of examples. In Integrable Models and Strings: Proceedings (pp. 136-147). (Lecture notes in physics, 436). Berlin: Springer.
  11. 11. Henneaux, M. (1994). Spacetime locality of the antifield formalism: general method illustrated by means of explicit examples. In F. Colomo, L. Lusanna, & G. Marmo (Eds.), Constraint theory and quantization methods: from relativistic particles to field theory and general relativity. Proceedings (pp. 40-51) Singapore: World Scientific.
  12. 12. Henneaux, M. (1992). On the use of auxiliary fields in classical mechanics and in field theory. In M. J. Gotay, J. E. Marsden, & V. Moncrief (Eds.), Mathematical aspects of classical field theory: Proceedings of the AMS-IMS-SIAM joint summer research conference (pp. 393-401). (Contemporary mathematics, 132). Providence, Rhode Island, USA: American Mathematical Society.

  13. << Précédent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Suivant >>