Parties d'ouvrages collectifs (6)

  1. 1. Massart, T., Ehab Moustafa Kamel, K., & Hernandez Velazquez, H. A. (2019). Automated geometry extraction and discretization for cohesive zone-based modelling of irregular masonry. In B. Ghiassi (Ed.), Numerical Modelling of Masonry and Historical Structures: From Theory to Applications (pp. 397-422). Cambridge: Elsevier.(Woodhead Publishing Series in Civil and Structural Engineering).
  2. 2. Berke, P., & Massart, T. (2011). Coupled friction and roughness surface effects in shallow spherical nanoindentation. In G. Zavarise & P. Wriggers (Eds.), Trends in computational contact mechanics (pp. 269-289). New York: Springer.(Lecture Notes in Applied and Computational Mechanics, 58). doi:10.1007/978-3-642-22167-5_15
  3. 3. Massart, T., Kouznetsova, V., Peerlings, R., & Geers, M. (2010). Computational Homogenization for Localization and Damage. In V. Kouznetsova, M. Vaz Junio, E. de Souza Neto, & P. Munoz-Rojas (Eds.), Advanced Computational Material Modeling: From Classical to Multi-Scale Techniques (pp. 111-164). Wiley. doi:10.1002/9783527632312.ch4
  4. 4. Bouillard, P., Menchel, K., Santafé, B., & Massart, T. (2008). Progressive collapse simulation techniques for RC structures. In J. Vantomme, J. Vantomme, & J. Vantomme (Eds.), Structural Design of Constructions subjected to exceptional or accidental actions (pp. 92-114). Bruxelles: Presses universitaires de Bruxelles.
  5. 5. Massart, T., Peerlings, R., Geers, M., & Bouillard, P. (2006). A multi-scale computational approach for the fracture behaviour of quasi-brittle materials. In B. Topping (Ed.), Innovation in computational structures technology (pp. 303-324). Stirlingshire, Scotland: Saxe-Coburg Publications.
  6. 6. Bouillard, P., Mertens, T., & Massart, T. (2004). Numerical modeling of wave propagation in the medium frequency range: overview and trends. In B. Topping & C. Mota Soares (Eds.), Progress in Computational Structures Technology (pp. 59-76). Saxe-Coburg Publications.
  7.   Articles dans des revues avec comité de lecture (86)

  8. 1. Ehab Moustafa Kamel, K., & Massart, T. (2024). Towards automated image-based cohesive zone modeling of cracking in irregular masonry. Mathematics and mechanics of solids. doi:DOI: 10.1177/10812865241228825
  9. 2. Gulfo Hernandez, L. F., Wintiba, B., Li, A., Berke, P., & Massart, T. (2024). Incorporation of compaction effects in the automated generation of 3D woven composites representative volume elements by geometrical modelling. Journal of composite materials, 58(4), 547-567. doi:10.1177/00219983241226793
  10. 3. Li, A., Remmers, J. J., Geers, M. M., & Massart, T. (2023). A consistent formulation for yarn re-orientation in shear and off-axis loading of woven composites RVEs. Composite structures, 324, 117472. doi:https://doi.org/10.1016/j.compstruct.2023.117472
  11. 4. Nasika, C., Díez, P., Gerard, P., Massart, T., & Zlotnik, S. (2023). Discrete Empirical Interpolation for hyper-reduction of hydro-mechanical problems in groundwater flow through soil. International journal for numerical and analytical methods in geomechanics. doi:10.1002/nag.3487
  12. 5. Chen, L., Berke, P., Massart, T., Bordas, S. P., & Beex, L. A. (2022). An adaptive multiscale quasicontinuum approach for mechanical simulations of elastoplastic periodic lattices. Mechanics research communications, 126, 104019. doi:10.1016/j.mechrescom.2022.104019
  13. 6. Li, A., Ehab Moustafa Kamel, K., Wintiba, B., Remmers, J. J., Marc, G. M., & Massart, T. (2022). A level set-based procedure for the cohesive modelling of yarn-yarn contacts in woven composite RVEs. Composite structures, 304, 116356. doi:doi.org/10.1016/j.compstruct.2022.116356

  14. << Précédent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Suivant >>