Parties d'ouvrages collectifs (1)

  1. 1. Venkatesan, P., Sun, Z., Sietsma, J., & Yang, Y. (2016). Chapter 22 - Simultaneous Electrochemical Recovery of Rare Earth Elements and Iron from Magnet Scrap: A Theoretical Analysis. In P. Venkatesan (Ed.), Rare Earths Industry (pp. 335-346). Elsevier. doi:10.1016/B978-0-12-802328-0.00022-X
  2.   Articles dans des revues avec comité de lecture (11)

  3. 1. Borra, V. L., Jena, A., Sistla, N. S., Venkatesan, P., Önal, M. A. R., & Borra, C. R. (2024). Synergetic recycling of permanent magnet and Li-ion battery cathode material for metals recovery. Sustainable Materials and Technologies, 41, e01043. doi:10.1016/j.susmat.2024.e01043
  4. 2. Borra, V. L., Challakonda, N. V. S., Jana, P., Venkatesan, P., Recai Önal, M. A., & Borra, C. R. (2024). Novel routes for synthesis of rare earth oxychlorides. Materials Today Chemistry, 38, 102098. doi:10.1016/j.mtchem.2024.102098
  5. 3. Borra, C. R., Saida, S., Kar, M. K., Venkatesan, P., Singh, V., & Ӧnal, M. A. R. (2023). The Effect of Mechanochemical Activation on Carbothermic Reduction of Pyrolusite Ore. Mining, Metallurgy and Exploration, 40(1), 121-129. doi:10.1007/s42461-022-00717-7
  6. 4. Önal, M. A. R., Panda, L., Kopparthi, P., Singh, V., Venkatesan, P., & Borra, C. R. (2021). Hydrometallurgical Production of Electrolytic Manganese Dioxide (EMD) from Furnace Fines. Minerals, 11(7), 712. doi:10.3390/min11070712
  7. 5. Abbasalizadeh, A., Seetharaman, S., Venkatesan, P., Sietsma, J., & Yang, Y. (2019). Use of iron reactive anode in electrowinning of neodymium from neodymium oxide. Electrochimica acta, 310, 146-152. doi:10.1016/j.electacta.2019.03.161
  8. 6. Venkatesan, P., Vander Hoogerstraete, T., Hennebel, T., Binnemans, K., Sietsma, J., & Yang, Y. (2018). Selective electrochemical extraction of REEs from NdFeB magnet waste at room temperature. Green chemistry, 20(5), 1065-1073. doi:10.1039/C7GC03296J
  9. 7. Venkatesan, P., Vander Hoogerstraete, T., Binnemans, K., Sun, Z., Sietsma, J., & Yang, Y. (2018). Selective Extraction of Rare-Earth Elements from NdFeB Magnets by a Room-Temperature Electrolysis Pretreatment Step. ACS Sustainable Chemistry and Engineering, 6(7), 9375-9382. doi:10.1021/acssuschemeng.8b01707
  10. 8. Venkatesan, P., Sun, Z., Sietsma, J., & Yang, Y. (2018). An environmentally friendly electro-oxidative approach to recover valuable elements from NdFeB magnet waste. Separation and purification technology, 191, 384-391. doi:10.1016/j.seppur.2017.09.053
  11. 9. Lixandru, A., Venkatesan, P., Jönsson, C., Poenaru, I., Hall, B. D., Yifan, Y., Walton, A., Güth, K., Gauß, R., & Gutfleisch, O. (2017). Identification and recovery of rare-earth permanent magnets from waste electrical and electronic equipment. Waste management, 68, 482-489. doi:10.1016/j.wasman.2017.07.028
  12. 10. Sun, Z., Cao, H., Venkatesan, P., Jin, W.-L., Xiao, Y., Sietsma, J., & Yang, Y. (2017). Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions. Frontiers of Chemical Science and Engineering, 11(3), 308-316. doi:10.1007/s11705-016-1587-x
  13. 11. Haccuria, E., Ning, P., Cao, H., Venkatesan, P., Jin, W., Yifan, Y., & Sun, Z. (2017). Effective treatment for electronic waste - Selective recovery of copper by combining electrochemical dissolution and deposition. Journal of cleaner production, 152, 150-156. doi:10.1016/j.jclepro.2017.03.112