Parties d'ouvrages collectifs (1)

  1. 1. Diaconu, C. A., Heidler, K., Bamber, J. L., & Zekollari, H. (2025). Multi-sensor deep learning for glacier mapping. In Deep Learning for Multi-Sensor Earth Observation (pp. 287-333). Elsevier. doi:10.1016/B978-0-44-326484-9.00024-5
  2.   Articles dans des revues avec comité de lecture (22)

  3. 1. Ponds, M., Hanus, S., Zekollari, H., ten Veldhuis, M. C., Schoups, G., Kaitna, R., & Hrachowitz, M. (2025). Adaptation of root zone storage capacity to climate change and its effects on future streamflow in Alpine catchments: towards non-stationary model parameters. Hydrology and earth system sciences, 29(15), 3545-3568. doi:10.5194/hess-29-3545-2025
  4. 2. Legrain, E., Tollenaar, V., Goderis, S., Ardoin, L., Blard, P.-H., Claeys, P., Cordero, R., Debaille, V., Fripiat, F., Huybrechts, P., Imae, N., Izeboud, M., Pattyn, F., Pourkhorsandi, H., Seguinot, J., Shirai, N., Vancappellen, M., Van Ginneken, M., Wauthy, S., Yamaguchi, A., Yesiltas, M., & Zekollari, H. (2025). Absence of Elevation‐Dependent Warming in Antarctica Inferred From Blue Ice Paleoclimate Records. Geophysical research letters, 52(9). doi:10.1029/2024GL113165
  5. 3. Tollenaar, V., Zekollari, H., Kittel, C., Farinotti, D., Lhermitte, S., Debaille, V., Goderis, S., Claeys, P., Joy, K. H., & Pattyn, F. (2024). Antarctic meteorites threatened by climate warming. Nature climate change, 14(4), 340-343. doi:10.1038/s41558-024-01954-y
  6. 4. Tollenaar, V., Zekollari, H., Pattyn, F., Rußwurm, M., Kellenberger, B., Lhermitte, S., Izeboud, M., & Tuia, D. (2024). Where the White Continent Is Blue: Deep Learning Locates Bare Ice in Antarctica. Geophysical research letters, 51(3). doi:10.1029/2023GL106285
  7. 5. Løkkegaard, A., Mankoff, K. D., Zdanowicz, C., Clow, G. G., Lüthi, M. M., Doyle, S. S., Thomsen, H. H., Fisher, D., Harper, J., Aschwanden, A., Vinther, B. M., Dahl-Jensen, D., Zekollari, H., Meierbachtol, T., McDowell, I., Humphrey, N., Solgaard, A., Karlsson, N. N., Khan, S. S., Hills, B., Law, R., Hubbard, B., Christoffersen, P., Jacquemart, M., Seguinot, J., Fausto, R. R., & Colgan, W. (2023). Greenland and Canadian Arctic ice temperature profiles database. The Cryosphere, 17(9), 3829-3845. doi:10.5194/tc-17-3829-2023
  8. 6. Postnikova, T., Rybak, O., Gubanov, A., Zekollari, H., Huss, M., & Shahgedanova, M. (2023). Debris cover effect on the evolution of Northern Caucasus glaciers in the 21st century. Frontiers in Earth Science, 11, 1256696. doi:10.3389/feart.2023.1256696
  9. 7. Bolibar, J., Rabatel, A., Gouttevin, I., Zekollari, H., & Galiez, C. (2022). Nonlinear sensitivity of glacier mass balance to future climate change unveiled by deep learning. Nature communications, 13(1), 409. doi:10.1038/s41467-022-28033-0
  10. 8. Wiersma, P., Aerts, J., Zekollari, H., Hrachowitz, M., Drost, N., Huss, M., Sutanudjaja, E. E., & Hut, R. (2022). Coupling a global glacier model to a global hydrological model prevents underestimation of glacier runoff. Hydrology and earth system sciences, 26(23), 5971-5986. doi:10.5194/hess-26-5971-2022
  11. 9. Compagno, L., Huss, M., Zekollari, H., Miles, E. S., & Farinotti, D. (2022). Future growth and decline of high mountain Asia's ice-dammed lakes and associated risk. Communications Earth and Environment, 3(1), 191. doi:10.1038/s43247-022-00520-8
  12. 10. Zekollari, H., Huss, M., Farinotti, D., & Lhermitte, S. (2022). Ice-Dynamical Glacier Evolution Modeling—A Review. Reviews of geophysics, 60(2), e2021RG000754. doi:10.1029/2021RG000754
  13. 11. Compagno, L., Huss, M., Miles, E. S., McCarthy, M. J., Zekollari, H., Dehecq, A., Pellicciotti, F., & Farinotti, D. (2022). Modelling supraglacial debris-cover evolution from the single-glacier to the regional scale: an application to High Mountain Asia. The Cryosphere, 16(5), 1697-1718. doi:10.5194/tc-16-1697-2022

  14. << Précédent 1 2 3 Suivant >>