Articles dans des revues avec comité de lecture (12)

  1. 1. Chen, Q., Ozkan, A., Chattopadhyay, B., Baert, K., Poleunis, C., Tromont, A., Snyders, R., Delcorte, A., Terryn, H., Delplancke, M.-P., Geerts, Y., & Reniers, F. (2019). N-Doped TiO2 Photocatalyst Coatings Synthesized by a Cold Atmospheric Plasma. Langmuir, 35(22), 7161-7168. doi:10.1021/acs.langmuir.9b00784
  2. 2. Mertens, J., Baneton, J., Ozkan, A., Pospisilova, E., Nysten, B., Delcorte, A., & Reniers, F. (2019). Atmospheric pressure plasma polymerization of organics: effect of the presence and position of double bonds on polymerization mechanisms, plasma stability and coating chemistry. Thin solid films, 671, 64-76. doi:10.1016/j.tsf.2018.12.036
  3. 3. Mertens, J., Baneton, J., Ozkan, A., Popsisilova, E., Nysten, B., Delcorte, A., & Reniers, F. (2019). Atmospheric pressure plasma polymerization of organics: Effect of the presence and position of double bonds on polymerization mechanisms, plasma stability and coating chemistry. Thin solid films, 671, 64-76.
  4. 4. Brune, L., Ozkan, A., Genty, E., Visart de Bocarmé, T., & Reniers, F. (2018). Dry reforming of methane via plasma-catalysis: influence of the catalyst nature supported on alumina in a packed-bed DBD configuration. Journal of physics. D, Applied physics, 51, 234002. doi:10.1088/1361-6463/aac047
  5. 5. Chen, Q., Liu, Q., Ozkan, A., Chattopadhyay, B., Wallaert, G., Baert, K., Delplancke, M.-P., Geerts, Y., & Reniers, F. (2018). Atmospheric pressure dielectric barrier discharge synthesis of morphology-controllable TiO2 films with enhanced photocatalytic activity. Thin solid films, 664, 90. doi:10.1016/j.tsf.2018.08.025
  6. 6. Snoeckx, R., Ozkan, A., Reniers, F., & Bogaerts, A. A. M. B. A. (2017). The Quest for Value-Added Products from Carbon Dioxide and Water in a Dielectric Barrier Discharge: A Chemical Kinetics Study. ChemSusChem (Print), 10(2), 409-424. doi:10.1002/cssc.201601234
  7. 7. Ozkan, A., Bogaerts, A. A. M. B. A., & Reniers, F. (2017). Routes to increase the conversion and the energy efficiency in the splitting of CO2 by a dielectric barrier discharge. Journal of physics. D, Applied physics, 50(8), 084004. doi:10.1088/1361-6463/aa562c
  8. 8. Ozkan, A., Dufour, T., Silva, T., Britun, N., Snyders, R., Reniers, F., & Bogaerts, A. A. M. B. A. (2016). DBD in burst mode: Solution for more efficient CO2 conversion? Plasma sources science & technology, 25(5), 055005. doi:10.1088/0963-0252/25/5/055005
  9. 9. Ozkan, A., Dufour, T., Bogaerts, A. A. M. B. A., & Reniers, F. (2016). How do the barrier thickness and dielectric material influence the filamentary mode and CO2 conversion in a flowing DBD? Plasma sources science & technology, 25(4), 045016. doi:10.1088/0963-0252/25/4/045016
  10. 10. Ozkan, A., Dufour, T., Silva, T., Britun, N., Snyders, R., Bogaerts, A. A. M. B. A., & Reniers, F. (2016). The influence of power and frequency on the filamentary behavior of a flowing DBD: Application to the splitting of CO2. Plasma sources science & technology, 25(2), 025013. doi:10.1088/0963-0252/25/2/025013
  11. 11. Ozkan, A., Arnoult, G., De Keyzer, P., Bogaerts, A. A. M. B. A., & Reniers, F. (2015). CO2-CH4 conversion and syngas formation at atmospheric pressure using a multi-electrode dielectric barrier discharge. Journal of electron spectroscopy and related phenomena, 9, 78-81.
  12. 12. Ozkan, A., Dufour, T., Arnoult, G., De Keyzer, P., Bogaerts, A., & Reniers, F. (2015). CO2–CH4 conversion and syngas formation at atmospheric pressure using a multi-electrode dielectric barrier discharge. Journal of CO2 utilization, 9, 74-81. doi:10.1016/j.jcou.2015.01.002

  13. << Précédent 1 2 Suivant >>