Ouvrages édités à titre de seul éditeur ou en collaboration (1)

  1. 1. Napolitano, S. (2015). Non-Equilibrium Phenomena in Confined Soft Matter: Irreversible Adsorption, Physical Aging and Glass Transition at the Nanoscale. Cham: Springer. doi:10.1007/978-3-319-21948-6
  2.   Parties d'ouvrages collectifs (4)

  3. 1. Napolitano, S. (2020). Crystallization of Polymers Under 1D Confinement. In A. Nogales & T. T. Ezquerra (Eds.), Crystallization as Studied by Broadband Dielectric Spectroscopy.
  4. 2. Capponi, S., Napolitano, S., & Wudie;bbenhorst, M. (2015). 1D confinement stabilizes non-equilibrium liquid phase with enhanced orientational order. In Non-equilibrium Phenomena in Confined Soft Matter: Irreversible Adsorption, Physical Aging and Glass Transition at the Nanoscale (pp. 227-244). Springer International Publishing. doi:10.1007/978-3-319-21948-6_10
  5. 3. Wübbenhorst, M., & Napolitano, S. (2014). Deviations from Bulk Glass Transition Dynamics of Small Molecule Glass Formers: Some Scenarios in Relation to the Dimensionality of the Confining Geometry. In Dynamics in Geometrical Confinement. Heisenberg: Springer.
  6. 4. Napolitano, S., & Wübbenhorst, M. (2014). Anomalous Decoupling of Translational and Rotation Motion Under 1D Confinement, Evidences from Crystallization and Diffusion Experiments. In Dynamics in Geometrical Confinement. Heisenberg: Springer.
  7.   Articles dans des revues avec comité de lecture (84)

  8. 1. White, R. R., Napolitano, S., & Lipson, J. J. (2025). Mechanistic Picture for the Slow Arrhenius Process in Glass Forming Systems: The Collective Small Displacements Model. Physical review letters, 134, 098203.
  9. 2. Wang, M., Li, C., Napolitano, S., Wang, D., & Liu, G. (2024). Quantifying and Modeling the Crystallinity of Polymers Confined in Nanopores. ACS macro letters, 13(8), 908-914. doi:10.1021/acsmacrolett.4c00287
  10. 3. Thoms, E., Song, Z., Wang, K., & Napolitano, S. (2024). Simple Model to Predict the Adsorption Rate of Polymer Melts. Physical review letters, 132, 248101.
  11. 4. Thoms, E., Wang, K., Chandran, S., & Napolitano, S. (2024). Fast Processing Affects the Relaxation of Polymers: The Slow Arrhenius Process Can Probe Stress at the Molecular Level. The Journal of Physical Chemistry Letters, 15, 4838-4843.
  12. 5. Thoms, E., Li, C., & Napolitano, S. (2024). Tracing the slow Arrhenius process deep in the glassy state–quantitative evaluation of the dielectric relaxation of bulk samples and thin polymer films in the temperature domain. The Journal of Chemical Physics, 160, 034901.
  13. 6. Yang, Y., Houkuan, T., Napolitano, S., & Zuo, B. (2023). Crystallization in thin films of polymer glasses: The role of free surfaces, solid interfaces and their competition. Progress in polymer science, 144, 101725.
  14. 7. Caporaletti, F., & Napolitano, S. (2023). The slow Arrhenius process in small organic molecules. PCCP. Physical chemistry chemical physics, 26(2), 745-748. doi:10.1039/d3cp05044k

  15. << Précédent 1 2 3 4 5 6 7 8 Suivant >>