Parties d'ouvrages collectifs (2)
1.
Fest, J.-B., Heikkilä, T., Loris, I., Martin, S., Ratti, L., Rebegoldi, S., & Sarnighausen, G. (2024). On a fixed-point continuation method for a convex optimization problem. In Advanced Techniques in Optimization for Machine learning and Imaging (ATOMI 2022) (pp. 15-30). Singapore: Springer.(Springer INdAM Series). Articles dans des revues avec comité de lecture (44)
3.
Bonettini, S., Loris, I., Porta, F., Prato, M., & Rebegoldi, S. (2017). On the convergence of a linesearch based proximal-gradient method for nonconvex optimization. Inverse problems, 33(5), 055005. doi:10.1088/1361-6420/aa5bfd5.
Prato, M., Bonettini, S., Loris, I., Porta, F., & Rebegoldi, S. (2016). On the constrained minimization of smooth Kurdyka-Łojasiewicz functions with the scaled gradient projection method. Journal of physics. Conference series, 756(1), 012001. doi:10.1088/1742-6596/756/1/01200110.
Charléty, J., Voronin, S., Nolet, G., Loris, I., Simons, F., Sigloch, K., & Daubechies, I. (2013). Global seismic tomography with a sparsity constraint: comparison with smoothing and damping regularization. Journal of Geophysical Research (Solid Earth), 118, 4887-4899. doi:10.1002/jgrb.50326