Articles dans des revues avec comité de lecture (43)

  1. 1. Mary Joy, R., Cherta Garrido, M. F., Harb, O. J. Y., Jeuris, H., Rouzbahani, R., D’Haen, J., Clemmen, S., Van Thourhout, D., Vanpoucke, D. E. P., Pobedinskas, P., & Haenen, K. (2025). Fabrication and Photoluminescence Studies of Tin-Vacancy Centers in Chemical Vapor Deposition Diamond. ACS Materials Letters, 2639-4979. doi:10.1021/acsmaterialslett.5c01218
  2. 2. David, T., Kockaert, P., & Clemmen, S. (2025). Four-wave mixing simulation in weakly nonlinear Bragg gratings using the grating dispersion operator in the nonlinear Schrödinger equation. Optics express, 33(25), 53182-53198. doi:10.1364/OE.572984
  3. 3. Vandekerckhove, T., De Witte, J., De Jaeger, L., Vissers, E., Janssen, S., Verheyen, P., Singh, N., Bode, D., Davi, M., Ferraro, F., Absil, P., Balakrishnan, S., Van Campenhout, J., Van Thourhout, D., Roelkens, G., Clemmen, S., & Kuyken, B. (2025). A Scalable Quadratic Nonlinear Silicon Photonics Platform With Printable Entangled Photon-Pair Sources. Laser & Photonics Reviews. doi:10.1002/lpor.202501357
  4. 4. De Jaeger, L., Vandekerckhove, T., Reep, T., Poelman, S., Clemmen, S., & Kuyken, B. (2025). Compact low-voltage lithium niobate racetrack modulator on a silicon nitride platform through micro-transfer printing. Optics Letters, 50(16), 4942-4945. doi:10.1364/OL.561544
  5. 5. Vanackere, T., Vandekerckhove, T., Billet, M., Tan, Y., Niels, M., Zhai, T., Parracino, A., Bonito, V., Withouck, J., Roelkens, G., Van Thourhout, D., Clemmen, S., & Kuyken, B. (2024). Towards scalable heterogeneous integration of thin-film lithium niobate on silicon photonics using microtransfer printing. Proceedings of SPIE - The International Society for Optical Engineering, 13012, 130120B. doi:10.1117/12.3026043
  6. 6. Vanackere, T., Vandekerckhove, T., Bogaert, L., Billet, M., Poelman, S., Cuyvers, S., Van Kerrebrouck, J., Moerman, A., Caytan, O., Singh, N., Lemey, S., Torfs, G., Ossieur, P., Roelkens, G., Clemmen, S., & Kuyken, B. (2023). Heterogeneous integration of a high-speed lithium niobate modulator on silicon nitride using micro-transfer printing. APL Photonics, 8(8). doi:10.1063/5.0150878
  7. 7. Vandekerckhove, T., Vanackere, T., De Witte, J., Cuyvers, S., Dos Reis, L. N., Billet, M., Roelkens, G., Clemmen, S., & Kuyken, B. (2023). Reliable micro-transfer printing method for heterogeneous integration of lithium niobate and semiconductor thin films. Optical Materials Express, 13(7), 1984. doi:10.1364/OME.494038
  8. 8. Massar, S., & Clemmen, S. (2021). Resource efficient single photon source based on active frequency multiplexing. Optics Letters, 46(12), 2832-2835.
  9. 9. Reynkens, K., Clemmen, S., Zhao, H., Raza, A., Vanackere, T., Stassen, A., Van Daele, M., Dendooven, J., & Baets, R. (2021). Gold-induced photothermal background in on-chip surface enhanced stimulated Raman spectroscopy. Optics Letters, 46(5), 953-956. doi:10.1364/OL.418527
  10. 10. Reynkens, K., Clemmen, S., Raza, A., Zhao, H., Peñaranda, J. S.-D., Detavernier, C., & Baets, R. (2020). Mitigation of photon background in nanoplasmonic all-on-chip Raman sensors. Optics express, 28(22), 33564. doi:10.1364/OE.408638
  11. 11. Clemmen, S. (2020). Coherent frequency conversion for quantum information processing. Proceedings of SPIE - The International Society for Optical Engineering, 11265, 112650G. doi:10.1117/12.2550159
  12. 12. Li, Y., Zhao, H., Raza, A., Clemmen, S., & Baets, R. (2020). Surface-Enhanced Raman Spectroscopy Based on Plasmonic Slot Waveguides with Free-Space Oblique Illumination. IEEE journal of quantum electronics, 56(1), 8864067. doi:10.1109/JQE.2019.2946839

  13. << Précédent 1 2 3 4 5 6 7 8 9 Suivant >>