Parties d'ouvrages collectifs (4)

  1. 1. Blaschke, D., & Chamel, N. (2018). Phases of Dense Matter in Compact Stars. In L. Rezzolla, P. M. Pizzochero, D. I. Jones, N. Rea, & I. Vidaña (Eds.), The Physics and Astrophysics of Neutron Stars, Vol. 457. Astrophysics and Space Science Library (1 ed., pp. 337-400). Springer. doi:10.1007/978-3-319-97616-7
  2. 2. Chamel, N., Mutafchieva, Y. D., Stoyanov, Z. K., Mihailov, L., & Pavlov, R. (2017). Landau Quantisation of Electron Motion in the Crust of Highly Magnetised Neutron Stars. In A. Tadjer, R. Pavlov, J. Maruani, E. J. Brändas, & G. Delgado-Barrio (Eds.), Quantum Systems in Physics, Chemistry, and Biology: Advances in Concepts and Applications (pp. 181-191). Springer. doi:10.1007/978-3-319-50255-7_11
  3. 3. Chamel, N., Pearson, M. J., & Goriely, S. (2013). Pairing: from atomic nuclei to neutron-star crusts. In R. Broglia & V. Zelevinsky (Eds.), 50 years of nuclear BCS: Pairing in Finite Systems (pp. 284-296). World Scientific. doi:10.1142/9789814412490_0021
  4. 4. Goriely, S., Chamel, N., & Pearson, M. J. (2012). Neutron-star crusts and finite nuclei. In C. Bertulani & J. Piekarewicz (Eds.), Neutron Star Crust (pp. 213-233). Hauppauge, New York: Nova Science Publishers.
  5.   Articles dans des revues avec comité de lecture (124)

  6. 1. Grams, G., Ryssens, W., Scamps, G., Goriely, S., & Chamel, N. (2023). Skyrme-Hartree-Fock-Bogoliubov mass models on a 3D mesh: III. From atomic nuclei to neutron stars. European Physical Journal A. Hadrons and nuclei, 59, 270. doi:10.1140/epja/s10050-023-01158-6
  7. 2. Allard, V., & Chamel, N. (2023). Gapless superfluidity in neutron stars: Normal-fluid fraction. Physical Review C, 108(4), 045801. doi:10.1103/PhysRevC.108.045801
  8. 3. Perot, L., & Chamel, N. (2023). Role of Quark Matter and Color Superconductivity in the Structure and Tidal Deformability of Strange Dwarfs. Universe, 9(9), 382. doi:10.3390/universe9090382
  9. 4. Shchechilin, N., Chamel, N., & Pearson, J. M. (2023). Unified equations of state for cold nonaccreting neutron stars with Brussels-Montreal functionals. IV. Role of the symmetry energy in pasta phases. Physical Review C, 108(2). doi:10.1103/PhysRevC.108.025805
  10. 5. Allard, V., & Chamel, N. (2023). Gapless superfluidity in neutron stars: Thermal properties. Physical Review C, 108(1), 015801. doi:10.1103/PhysRevC.108.015801
  11. 6. Perot, L., Chamel, N., & Vallet, P. (2023). Unmasking strange dwarfs with gravitational-wave observations. Physical Review D, 107, 103004. doi:10.1103/PhysRevD.107.103004
  12. 7. Chamel, N., Fantina, A., Suleiman, L., Zdunik, J. L., & Haensel, P. (2023). Heating from Electron Captures by Nuclei in Magnetar Crusts. Proceedings of the International Astronomical Union, 16(S363), 305-308. doi:10.1017/S1743921322001016
  13. 8. Perot, L., & Chamel, N. (2023). Imprint of the Crystallization of Binary White Dwarfs on Gravitational Wave Observations with LISA. Physical sciences forum, 7(1), 3. doi:10.3390/ECU2023-14023

  14. << Précédent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Suivant >>