Parties d'ouvrages collectifs (4)

  1. 1. Blaschke, D., & Chamel, N. (2018). Phases of Dense Matter in Compact Stars. In L. Rezzolla, P. M. Pizzochero, D. I. Jones, N. Rea, & I. Vidaña (Eds.), The Physics and Astrophysics of Neutron Stars, Vol. 457. Astrophysics and Space Science Library (1 ed., pp. 337-400). Springer. doi:10.1007/978-3-319-97616-7
  2. 2. Chamel, N., Mutafchieva, Y. D., Stoyanov, Z. K., Mihailov, L., & Pavlov, R. (2017). Landau Quantisation of Electron Motion in the Crust of Highly Magnetised Neutron Stars. In A. Tadjer, R. Pavlov, J. Maruani, E. J. Brändas, & G. Delgado-Barrio (Eds.), Quantum Systems in Physics, Chemistry, and Biology: Advances in Concepts and Applications (pp. 181-191). Springer. doi:10.1007/978-3-319-50255-7_11
  3. 3. Chamel, N., Pearson, M. J., & Goriely, S. (2013). Pairing: from atomic nuclei to neutron-star crusts. In R. Broglia & V. Zelevinsky (Eds.), 50 years of nuclear BCS: Pairing in Finite Systems (pp. 284-296). World Scientific. doi:10.1142/9789814412490_0021
  4. 4. Goriely, S., Chamel, N., & Pearson, M. J. (2012). Neutron-star crusts and finite nuclei. In C. Bertulani & J. Piekarewicz (Eds.), Neutron Star Crust (pp. 213-233). Hauppauge, New York: Nova Science Publishers.
  5.   Articles dans des revues avec comité de lecture (132)

  6. 1. Grams, G., Shchechilin, N., Sánchez Fernández, A., Ryssens, W., Chamel, N., & Goriely, S. (2025). Skyrme–Hartree–Fock–Bogoliubov mass models on a 3D mesh: IV. Improved description of the isospin dependence of pairing. European Physical Journal A. Hadrons and nuclei, 61, 35. doi:10.1140/epja/s10050-025-01503-x
  7. 2. Chamel, N., Shchechilin, N., & Chugunov, A. I. (2025). Pressure and chemical potentials in the inner crust of a cold neutron star within Hartree-Fock and extended Thomas-Fermi methods. Physical Review C, 111(1). doi:10.1103/PhysRevC.111.015805
  8. 3. Pęcak, D., Zdanowicz, A., Chamel, N., Magierski, P., & Wlazłowski, G. (2024). Time-Dependent Nuclear Energy-Density Functional Theory Toolkit for Neutron Star Crust: Dynamics of a Nucleus in a Neutron Superfluid. Physical Review X, 14(4), 041054. doi:10.1103/PhysRevX.14.041054
  9. 4. Chamel, N., Pearson, J. M., & Shchechilin, N. (2024). Role of neutron pairing with density-gradient dependence in the semimicroscopic treatment of the inner crust of neutron stars. Physical Review C, 110(4), 045808. doi:10.1103/PhysRevC.110.045808
  10. 5. Cheung, L., Lin, L.-M., & Chamel, N. (2024). Torsional oscillations of magnetized neutron stars: Impacts of Landau-Rabi quantization of electron motion. Physical Review D, 110(8), 083021. doi:10.1103/PhysRevD.110.083021
  11. 6. Allard, V., & Chamel, N. (2024). Gapless neutron superfluidity in the crust of the accreting neutron stars KS 1731−260 and MXB 1659−29. European Physical Journal A. Hadrons and nuclei, 60, 116. doi:10.1140/epja/s10050-024-01329-z
  12. 7. Shchechilin, N., Chamel, N., Pearson, M. J., Chugunov, A. A., & Potekhin, A. Y. (2024). Unified equations of state for cold nonaccreting neutron stars with Brussels-Montreal functionals. V. Improved parametrization of the nucleon density distributions. Physical Review C, 109(5), 055802. doi:10.1103/PhysRevC.109.055802
  13. 8. Allard, V., & Chamel, N. (2024). Gapless Neutron Superfluidity Can Explain the Late Time Cooling of Transiently Accreting Neutron Stars. Physical review letters, 132(18). doi:10.1103/PhysRevLett.132.181001

  14. << Précédent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Suivant >>