Parties d'ouvrages collectifs (4)

  1. 1. Braet, F., Luo, D., Spector, I., Vermijlen, D., & Wisse, E. (2001). Endothelial and pit cells. In I. Arias, J. L. Boyer, F. Chisari, N. Fausto, D. Schachter, & D. Shafritz (Eds.), The liver: Biology and Pathobiology (4 ed., pp. 437-453). Philadelphia: Lippincott Williams & Wilkins.
  2. 2. Wisse, E., Braet, F., Luo, D., Vermijlen, D., Eddouks, M., Konstandoulaki, M., Empsen, C., & De Zanger, R. (1999). Endothelial cells of the hepatic sinusoids: A review. In K. Tanikawa & T. Ueno (Eds.), Liver Diseases and Hepatic Sinusoidal Cells (pp. 17-55). Springer-Verlag, Tokyo.
  3. 3. Wisse, E., Braet, F., Luo, D., Vermijlen, D., Eddouks, M., Empsen, C., Spapen, H., & De Zanger, R. (1999). Sinusoidal liver cells. In Oxford Textbook of Clinical Hepatology (pp. 33-49). Oxford University Press.
  4. 4. Wisse, E., Braet, F., Luo, D., Jans, D., Vermijlen, D., Kanellopoulou, C., Spapen, H., & De Zanger, R. (1997). On the tumoricide function of pit cells - the NK cells of the liver. In F. Vidal-Vanaclocha (Ed.), Functional heterogeneity of liver tissue (pp. 207-235). Heidelberg: Springer-Verlag.
  5.   Articles dans des revues avec comité de lecture (53)

  6. 1. Tuengel, J., Ranchal, S., Maslova, A., Aulakh, G., Papadopoulou, M., Drissler, S., Cai, B., Mohsenzadeh-Green, C., Soudeyns, H., Mostafavi, S., Elzen, P. V. D., Vermijlen, D., Cook, L., & Gantt, S. (2021). Characterization of adaptive-like γδ t cells in ugandan infants during primary cytomegalovirus infection. Viruses, 13(10), 1987. doi:10.3390/v13101987
  7. 2. Vanhaverbeke, C., Touboul, D., Elie, N., Prévost, M., Meunier, C. C., Michelland, S. S., Cunin, V. V., Ma, L., Vermijlen, D., Delporte, C., Pochet, S., Le Gouellec, A. A., Sève, M. M., Van Antwerpen, P., & Souard, F. (2021). Untargeted metabolomics approach to discriminate mistletoe commercial products. Scientific report, 11, 10.1038/s41598-021-93255-z, 14205.
  8. 3. Ma, L., Papadopoulou, M., Taton, M., Genco, F., Marchant, A., Meroni, V., & Vermijlen, D. (2021). Effector Vγ9Vδ2 T cell response to congenital Toxoplasma gondii infection. JCI insight, 6(16). doi:10.1172/jci.insight.138066
  9. 4. Mishra, A., Lai, G. C., Yao, L. J., Aung, T. T., Shental, N., Rotter-Maskowitz, A., Shepherdson, E., Singh, G. S. N., Pai, R., Shanti, A., Wong, R. M. M., Lee, A., Khyriem, C., Dutertre, C. A., Chakarov, S., Srinivasan, K., Shadan, N. B., Zhang, X.-M., Khalilnezhad, S., Cottier, F., Tan, A. S. M., Low, G., Chen, P., Fan, Y., Hor, P. X., Lee, A. K. M., Choolani, M., Vermijlen, D., Sharma, A., Fuks, G., Straussman, R., Pavelka, N., Malleret, B., McGovern, N., Albani, S., Chan, J. K. Y., & Ginhoux, F. (2021). Microbial exposure during early human development primes fetal immune cells. Cell. doi:10.1016/j.cell.2021.04.039
  10. 5. Papadopoulou, M., Sánchez Sánchez, G., & Vermijlen, D. (2020). Innate and adaptive γδ T cells: How, when, and why. Immunological reviews. doi:10.1111/imr.12926
  11. 6. Papadopoulou, M., Dimova, T., Shey, M., Briel, L., Veldtsman, H., Khomba, N., Africa, H., Steyn, M., Hanekom, W. W., Scriba, T. T., Nemes, E., & Vermijlen, D. (2020). Fetal public Vγ9Vδ2 T cells expand and gain potent cytotoxic functions early after birth. Proceedings of the National Academy of Sciences of the United States of America, 117(31), 18638-18648. doi:10.1073/pnas.1922595117
  12. 7. Ma, L., Phalke, S. P., Stevigny, C., Souard, F., & Vermijlen, D. (2020). Mistletoe-Extract Drugs Stimulate Anti-Cancer Vγ9Vδ2 T Cells. Cells, 9(6). doi:10.3390/cells9061560
  13. 8. Tieppo, P., Papadopoulou, M., Gatti, D., McGovern, N., Chan, J. K. Y., Gosselin, F., Goetgeluk, G., Weening, K., Ma, L., Dauby, N., Cogan, A., donner, C., Ginhoux, F., Vandekerckhove, B., & Vermijlen, D. (2019). The human fetal thymus generates invariant effector γδ T cells. The Journal of experimental medicine, 217(3). doi:10.1084/jem.20190580

  14. << Précédent 1 2 3 4 5 6 7 8 Suivant >>