Ouvrages édités à titre de seul éditeur ou en collaboration (3)

  1. 1. Charlier, E., Ernst, M., Esser, C., Leroy, J., & Swan, Y. (2018). Actes du Congrès MATh.en.JEANS 2017 à Liège.
  2. 2. Bartholme, C., Dominicy, Y., Ley, C., Richard, N., Swan, Y., & Van Bever, G. (2012). Notes de la quatrième BSSM: ISSN 2034-466X.
  3. 3. Ley, C., Richard, N., & Swan, Y. (2011). Notes de la troisième BSSM: ISSN 2034-466X. Brussels.
  4.   Parties d'ouvrages collectifs (1)

  5. 1. Hallin, M., Swan, Y., & Verdebout, T. (2014). A Serial Version of Hodges and Lehmann's "6/pi Result". In Contemporary Developments in Statistical Theory, a Festschrift for Hira L. Koul (pp. 137-153). Springer.
  6.   Articles dans des revues avec comité de lecture (34)

  7. 1. Ernst, M., & Swan, Y. (2021). Distances between distributions via Stein's method. Journal of theoretical probability.
  8. 2. Anastasiou, A., Barp, A., Briol, F. X., Ebner, B., Gaunt, R., Ghaderinezad, F., Gorham, J., Ley, C., Liu, Q., Mackey, L., Reinert, G., & Swan, Y. (2022). Stein’s Method Meets Statistics: A Review of Some Recent Developments. Statistical science.
  9. 3. Ley, C., Daly, F., Ghaderinezad, F., & Swan, Y. (2021). Simple variance bounds with applications to Bayesian posteriors and intractable distributions. Alea (Rio de Janeiro).
  10. 4. Ernst, M., Reinert, G., & Swan, Y. (2020). First-order covariance inequalities via Stein's method. Bernoulli, 26(3), 2051-2081. doi:10.3150/19-BEJ1182
  11. 5. Arras, B., Azmoodeh, E., Poly, G., & Swan, Y. (2020). Stein characterizations for linear combinations of gamma random variables. Brazilian Journal of Probability and Statistics, 34(2), 394-413. doi:doi:10.1214/18-BJPS420
  12. 6. Gaunt, R., Mijoule, G., & Swan, Y. (2020). Some new Stein operators for product distributions. Brazilian Journal of Probability and Statistics, 34(4), 795-808. doi:doi:10.1214/19-BJPS460
  13. 7. Ernst, M., Reinert, G., & Swan, Y. (2020). First order covariance inequalities via Stein’s method. Bernoulli, 26(3), 2051-2081. doi:doi:10.3150/19-BEJ1182
  14. 8. Arras, B., Azmoodeh, E., Poly, G., & Swan, Y. (2019). A bound on the Wasserstein-2 distance between linear combinations of independent random variables. Stochastic processes and their applications, 129(7), 2341-2375. doi:10.1016/j.spa.2018.07.009

  15. << Précédent 1 2 3 4 5 Suivant >>