Ouvrages édités à titre de seul éditeur ou en collaboration (3)

  1. 1. Charlier, E., Ernst, M., Esser, C., Leroy, J., & Swan, Y. (2018). Actes du Congrès MATh.en.JEANS 2017 à Liège.
  2. 2. Bartholme, C., Dominicy, Y., Ley, C., Richard, N., Swan, Y., & Van Bever, G. (2012). Notes de la quatrième BSSM: ISSN 2034-466X.
  3. 3. Ley, C., Richard, N., & Swan, Y. (2011). Notes de la troisième BSSM: ISSN 2034-466X. Brussels.
  4.   Parties d'ouvrages collectifs (1)

  5. 1. Hallin, M., Swan, Y., & Verdebout, T. (2014). A Serial Version of Hodges and Lehmann's "6/pi Result". In Contemporary Developments in Statistical Theory, a Festschrift for Hira L. Koul (pp. 137-153). Springer.
  6.   Articles dans des revues avec comité de lecture (43)

  7. 1. Anastasiou, A., Barp, A., Briol, F. X., Ebner, B., Gaunt, R., Ghaderinezad, F., Gorham, J., Ley, C., Liu, Q., Mackey, L., Reinert, G., & Swan, Y. (2022). Stein’s Method Meets Statistics: A Review of Some Recent Developments. Statistical science.
  8. 2. Ernst, M., & Swan, Y. (2021). Distances between distributions via Stein's method. Journal of theoretical probability.
  9. 3. McKeague, I. I., & Swan, Y. (2023). Stein's method and approximating the multidimensional quantum harmonic oscillator. Journal of Applied Probability, 60(3), 855-873. doi:10.1017/jpr.2022.125
  10. 4. McKeague, I. I., & Swan, Y. (2023). Stein’s method and approximating the multidimensional quantum harmonic oscillator. Journal of Applied Probability.
  11. 5. Swan, Y., & Germain, G. (2023). A note on one-dimensional Poincaré inequalities by Stein-type integration. Bernoulli, 29(2), 1714-1740.
  12. 6. Anastasiou, A., Barp, A., Briol, F. X., Ebner, B., Gaunt, R., Ghaderinezhad, F., Gorham, J., Gretton, A., Ley, C., Liu, Q., Mackey, L., Oates, C. C., Reinert, G., & Swan, Y. (2023). Stein’s Method Meets Computational Statistics: A Review of Some Recent Developments. Statistical science, 38(1), 120-139. doi:10.1214/22-STS863
  13. 7. Germain, G., & Swan, Y. (2023). A note on one-dimensional Poincaré inequalities by Stein-type integration. Bernoulli, 29(2), 1714-1740.
  14. 8. Mijoule, G., Raič, M., Reinert, G., & Swan, Y. (2023). Stein’s density method for multivariate continuous distributions. Electronic Journal of Probability, 28, 59. doi:10.1214/22-EJP883

  15. << Précédent 1 2 3 4 5 6 Suivant >>