Articles dans des revues avec comité de lecture (33)

  1. 1. Darche-Gabinaud, R., Kaafarani, A., Chazalon, M., Suain, V., Hendrickx, E., Conrard, L., Lefort, A., Libert, F., Demirler, M. C., Schiffmann, S. N., Perez-Morga, D., Wittamer, V., Parmentier, M., & Pirson, I. (2025). Synaptic Gpr85 Influences Cerebellar-Granule-Cell Electrical Properties and Light-Induced Behavior in Zebrafish. The Journal of neuroscience, 45(50), e0770252025. doi:10.1523/JNEUROSCI.0770-25.2025
  2. 2. Rovira I Berger, M., Ferrero, G., Miserocchi, M., Montanari, A., Lattuca, R., & Wittamer, V. (2025). A single-cell transcriptomic atlas reveals resident dendritic-like cells in the zebrafish brain parenchyma. eLife, 13. doi:10.7554/eLife.91427
  3. 3. Hassani Nia, F., & Wittamer, V. (2025). Zebrafish in neurodevelopmental disorders studies: Genetic models and pathological involvement of microglia. Developmental medicine and child neurology, 67(10), 9. doi:10.1111/dmcn.16317
  4. 4. Montanari, A., & Wittamer, V. (2024). Live Imaging and Characterization of Microglia Dynamics in the Zebrafish Embryo. Journal of Visualized Experiments,(207). doi:10.3791/66533
  5. 5. Kaafarani, A., Darche-Gabinaud, R., Bisteau, X., Imbault, V., Wittamer, V., Parmentier, M., & Pirson, I. (2023). Proximity Interactome Analysis of Super Conserved Receptors Expressed in the Brain Identifies EPB41L2, SLC3A2, and LRBA as Main Partners. Cells, 12(22), 2625. doi:10.3390/cells12222625
  6. 6. Rovira I Berger, M., Pozo Gomez, J., Miserocchi, M., & Wittamer, V. (2023). Isolation of Tissue Macrophages in Adult Zebrafish. Methods in molecular biology, 2713, 81-98. doi:10.1007/978-1-0716-3437-0_5
  7. 7. Paolicelli, R. R., Sierra, A., Stevens, B., Tremblay, M.-E., Aguzzi, A., Ajami, B., Amit, I., Audinat, E., Bechmann, I., Bennett, M., Bennett, F., Bessis, A., Biber, K., Bilbo, S., Blurton-Jones, M., Boddeke, E., Brites, D., Brône, B., Brown, G. C., Butovsky, O., Carson, M. J., Castellano, B., Colonna, M., Cowley, S. A., Cunningham, C., Davalos, D., De Jager, P. L., De Strooper, B., Denes, A., Eggen, B. B., Eyo, U., Galea, E., Garel, S., Ginhoux, F., Glass, C. K., Gokce, O., Gomez-Nicola, D., González, B., Gordon, S., Graeber, M. M., Greenhalgh, A. A., Gressens, P., Greter, M., Gutmann, D. D., Haass, C., Heneka, M. M., Heppner, F. F., Hong, S., Hume, D. D., Jung, S., Kettenmann, H., Kipnis, J., Koyama, R., Lemke, G., Lynch, M., Majewska, A., Malcangio, M., Malm, T., Mancuso, R., Masuda, T., Matteoli, M., McColl, B. W., Miron, V. E., Molofsky, A. V., Monje, M., Mracsko, E., Nadjar, A., Neher, J. J., Neniskyte, U., Neumann, F. H., Noda, M., Peng, B., Peri, F., Perry, H. V., Popovich, P. P., Pridans, C., Priller, J., Prinz, M., Ragozzino, D., Ransohoff, R. M., Salter, M. W., Schaefer, A., Schafer, D. P., Schwartz, M., Simons, M., Smith, C. J., Streit, W. W., Tay, T. L., Tsai, L.-H., Verkhratsky, A., von Bernhardi, R., Wake, H., Wittamer, V., Wolf, S. A., Wu, L.-J., & Wyss-Coray, T. (2022). Microglia states and nomenclature: A field at its crossroads. Neuron, 110(21), 3458-3483. doi:10.1016/j.neuron.2022.10.020
  8. 8. Rovira I Berger, M., Miserocchi, M., Montanari, A., Hammou, L., Chomette, L., Pozo Gomez, J., Imbault, V., Bisteau, X., & Wittamer, V. (2022). Zebrafish Galectin 3 binding protein is the target antigen of the microglial 4C4 monoclonal antibody. Developmental dynamics. doi:10.1002/dvdy.549
  9. 9. Guilliams, M., Bonnardel, J., Haest, B., Vanderborght, B., Wagner, C., Remmerie, A., Bujko, A., Martens, L., Thoné, T., Browaeys, R., De Ponti, F. F., Vanneste, B., Zwicker, C., Svedberg, F. F., Vanhalewyn, T., Gonçalves, A., Lippens, S., Devriendt, B., Cox, E., Ferrero, G., Wittamer, V., Willaert, A., Kaptein, S. S., Neyts, J., Dallmeier, K., Geldhof, P., Casaert, S., Deplancke, B., ten Dijke, P., Hoorens, A., Vanlander, A., Berrevoet, F., Van Nieuwenhove, Y., Saeys, Y., Saelens, W., Van Vlierberghe, H., Devisscher, L., & Scott, C. C. (2022). Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell, 185(2), 379-396.e38. doi:10.1016/j.cell.2021.12.018
  10. 10. Al Delbany, D. D., Robert, V., Dubois-Vedrenne, I., Del Prete, A., Vernimmen, M., Radi, A., Lefort, A., Libert, F., Wittamer, V., Sozzani, S., & Parmentier, M. (2021). Expression of CCRL2 Inhibits Tumor Growth by Concentrating Chemerin and Inhibiting Neoangiogenesis. Cancers (Basel), 13(19). doi:10.3390/cancers13195000
  11. 11. Dubois-Vedrenne, I., Al Delbany, D. D., De Henau, O., Robert, V., Vernimmen, M., Langa, F., Lefort, A., Libert, F., Wittamer, V., & Parmentier, M. (2021). The antitumoral effects of chemerin are independent from leukocyte recruitment and mediated by inhibition of neoangiogenesis. Oncotarget, 12(19), 1903-1919. doi:10.18632/oncotarget.28056
  12. 12. Ben Dhaou, C., Mandi, K., Frye, M., Acheampong, A., Radi, A., De Becker, B., Antoine, M., Baeyens, N., Wittamer, V., & Parmentier, M. (2021). Chemerin regulates normal angiogenesis and hypoxia-driven neovascularization. Angiogenesis. doi:10.1007/s10456-021-09818-1

  13. << Précédent 1 2 3 4 5 6 Suivant >>