Articles dans des revues avec comité de lecture (29)

  1. 1. Kaafarani, A., Darche-Gabinaud, R., Bisteau, X., Imbault, V., Wittamer, V., Parmentier, M., & Pirson, I. (2023). Proximity Interactome Analysis of Super Conserved Receptors Expressed in the Brain Identifies EPB41L2, SLC3A2, and LRBA as Main Partners. Cells, 12(22), 2625. doi:10.3390/cells12222625
  2. 2. Rovira I Berger, M., Pozo Gomez, J., Miserocchi, M., & Wittamer, V. (2023). Isolation of Tissue Macrophages in Adult Zebrafish. Methods in molecular biology, 2713, 81-98. doi:10.1007/978-1-0716-3437-0_5
  3. 3. Paolicelli, R. R., Sierra, A., Stevens, B., Tremblay, M.-E., Aguzzi, A., Ajami, B., Amit, I., Audinat, E., Bechmann, I., Bennett, M., Bennett, F., Bessis, A., Biber, K., Bilbo, S., Blurton-Jones, M., Boddeke, E., Brites, D., Brône, B., Brown, G. C., Butovsky, O., Carson, M. J., Castellano, B., Colonna, M., Cowley, S. A., Cunningham, C., Davalos, D., De Jager, P. L., De Strooper, B., Denes, A., Eggen, B. B., Eyo, U., Galea, E., Garel, S., Ginhoux, F., Glass, C. K., Gokce, O., Gomez-Nicola, D., González, B., Gordon, S., Graeber, M. M., Greenhalgh, A. A., Gressens, P., Greter, M., Gutmann, D. D., Haass, C., Heneka, M. M., Heppner, F. F., Hong, S., Hume, D. D., Jung, S., Kettenmann, H., Kipnis, J., Koyama, R., Lemke, G., Lynch, M., Majewska, A., Malcangio, M., Malm, T., Mancuso, R., Masuda, T., Matteoli, M., McColl, B. W., Miron, V. E., Molofsky, A. V., Monje, M., Mracsko, E., Nadjar, A., Neher, J. J., Neniskyte, U., Neumann, F. H., Noda, M., Peng, B., Peri, F., Perry, H. V., Popovich, P. P., Pridans, C., Priller, J., Prinz, M., Ragozzino, D., Ransohoff, R. M., Salter, M. W., Schaefer, A., Schafer, D. P., Schwartz, M., Simons, M., Smith, C. J., Streit, W. W., Tay, T. L., Tsai, L.-H., Verkhratsky, A., von Bernhardi, R., Wake, H., Wittamer, V., Wolf, S. A., Wu, L.-J., & Wyss-Coray, T. (2022). Microglia states and nomenclature: A field at its crossroads. Neuron, 110(21), 3458-3483. doi:10.1016/j.neuron.2022.10.020
  4. 4. Rovira I Berger, M., Miserocchi, M., Montanari, A., Hammou, L., Chomette, L., Pozo Gomez, J., Imbault, V., Bisteau, X., & Wittamer, V. (2022). Zebrafish Galectin 3 binding protein is the target antigen of the microglial 4C4 monoclonal antibody. Developmental dynamics. doi:10.1002/dvdy.549
  5. 5. Guilliams, M., Bonnardel, J., Haest, B., Vanderborght, B., Wagner, C., Remmerie, A., Bujko, A., Martens, L., Thoné, T., Browaeys, R., De Ponti, F. F., Vanneste, B., Zwicker, C., Svedberg, F. F., Vanhalewyn, T., Gonçalves, A., Lippens, S., Devriendt, B., Cox, E., Ferrero, G., Wittamer, V., Willaert, A., Kaptein, S. S., Neyts, J., Dallmeier, K., Geldhof, P., Casaert, S., Deplancke, B., ten Dijke, P., Hoorens, A., Vanlander, A., Berrevoet, F., Van Nieuwenhove, Y., Saeys, Y., Saelens, W., Van Vlierberghe, H., Devisscher, L., & Scott, C. C. (2022). Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell, 185(2), 379-396.e38. doi:10.1016/j.cell.2021.12.018
  6. 6. Al Delbany, D. D., Robert, V., Dubois-Vedrenne, I., Del Prete, A., Vernimmen, M., Radi, A., Lefort, A., Libert, F., Wittamer, V., Sozzani, S., & Parmentier, M. (2021). Expression of CCRL2 Inhibits Tumor Growth by Concentrating Chemerin and Inhibiting Neoangiogenesis. Cancers (Basel), 13(19). doi:10.3390/cancers13195000
  7. 7. Dubois-Vedrenne, I., Al Delbany, D. D., De Henau, O., Robert, V., Vernimmen, M., Langa, F., Lefort, A., Libert, F., Wittamer, V., & Parmentier, M. (2021). The antitumoral effects of chemerin are independent from leukocyte recruitment and mediated by inhibition of neoangiogenesis. Oncotarget, 12(19), 1903-1919. doi:10.18632/oncotarget.28056
  8. 8. Ben Dhaou, C., Mandi, K., Frye, M., Acheampong, A., Radi, A., De Becker, B., Antoine, M., Baeyens, N., Wittamer, V., & Parmentier, M. (2021). Chemerin regulates normal angiogenesis and hypoxia-driven neovascularization. Angiogenesis. doi:10.1007/s10456-021-09818-1
  9. 9. Ferrero, G., Miserocchi, M., Di Ruggiero, E., & Wittamer, V. (2021). A csf1rb mutation uncouples two waves of microglia development in zebrafish. Development, 148(1), dev194241. doi:10.1242/dev.194241
  10. 10. Kuil, L. E., Oosterhof, N., Ferrero, G., Mikulášová, T., Hason, M., Dekker, J., Rovira, M., van der Linde, H. C., van Strien, P. M., de Pater, E., Schaaf, G., Bindels, E. M., Wittamer, V., & van Ham, T. J. (2020). Zebrafish macrophage developmental arrest underlies depletion of microglia and reveals Csf1r-independent metaphocytes. eLife, 9, e53403. doi:10.7554/eLife.53403
  11. 11. Ferrero, G., Gomez, E., Lyer, S., Rovira I Berger, M., Miserocchi, M., Langenau, D. D., Bertrand, J. Y., & Wittamer, V. (2020). The macrophage-expressed gene (mpeg) 1 identifies a subpopulation of B cells in the adult zebrafish. Journal of leukocyte biology, 107(3), 431-443. doi:10.1002/JLB.1A1119-223R
  12. 12. Dubois-Vedrenne, I., De Henau, O., Robert, V., Vives, F. L., Al delbany, D., Vosters, O., Angelats Canals, E., Vernimmen, M., Luangsay, S., Wittamer, V., & Parmentier, M. (2019). Expression of Bioactive Chemerin by Keratinocytes Inhibits Late Stages of Tumor Development in a Chemical Model of Skin Carcinogenesis. Frontiers in oncology, 9, 1253. doi:10.3389/fonc.2019.01253

  13. << Précédent 1 2 3 4 5 Suivant >>