Articles dans des revues avec comité de lecture (24)

  1. 1. Pu, L., Zhao, L., Wang, J., Deleuze, C., Nilson, L., Henriksson, J., Laurent, P., & Chen, C. C. C. (2025). Avoidance of hydrogen sulfide is modulated by external and internal states in C. elegans. eLife, https://doi.org/10.7554/eLife.92964.3.
  2. 2. Belfi, A. C., Aviles, S. S., Forman-Rubinsky, R., Gill, H. K., Cohen, J. D., Nawrocka, A., Bourez, A., Van Antwerpen, P., Laurent, P., & Sundaram, M. V. (2025). Opposing roles for lipocalins and a CD36 family scavenger receptor in apical extracellular matrix-dependent protection of narrow tube integrity. bioRxiv : the preprint server for biology. doi:10.1101/2025.07.25.666821
  3. 3. Haque, R., Setty, H., Lorenzo, R., Stelzer, G., Rotkopf, R., Salzberg, Y., Goldman, G., Kumar, S., Halber, S. N., Leifer, A. M., Schneidman, E., Laurent, P., & Oren-Suissa, M. (2025). Decoding sexual dimorphism of the sex-shared nervous system at single-neuron resolution. Science advances, 11(28), eadv9106. doi:10.1126/sciadv.adv9106
  4. 4. Laurent, P. (2025). A jack of all trades: Hermaphrodite-specific serotonergic neuron in C. elegans. Journal of Biosciences, 50(2). doi:10.1007/s12038-025-00538-y
  5. 5. Gomes Queirós Lobo, T., Haasnoot, G. G., Nawrocka, A., Bruggeman, C. W., Razzauti Sanfeliu, A., Peterman, E. E., & Laurent, P. (2025). Sensory stimuli and cilium trafficking defects trigger the release of ciliary extracellular vesicles from multiple ciliary locations. bioRxiv : the preprint server for biology. doi:10.1101/2025.06.06.658075
  6. 6. Stratigi, A., Soler García, M., Krout, M., Shukla, S., De Bono, M., Richmond, J. J., & Laurent, P. (2025). Neuroendocrine control of synaptic transmission by PHAC-1 in C. elegans. The Journal of neuroscience. doi:10.1523/JNEUROSCI.1767-23.2024
  7. 7. Razzauti Sanfeliu, A., Gomes Queirós Lobo, T., & Laurent, P. (2023). Cilia-Derived Extracellular Vesicles in Caenorhabditis Elegans: In Vivo Imaging and Quantification of Extracellular Vesicle Release and Capture. Methods in molecular biology, 2668, 277-299. doi:10.1007/978-1-0716-3203-1_19
  8. 8. Tchetan, E., Ortiz, S., Olounladé, P. A., Hughes, K., Laurent, P., Azando, E. V. B., Hounzangbe-Adote, S. M., Gbaguidi, F. A., & Quetin-Leclercq, J. (2022). Fractionation Coupled to Molecular Networking: Towards Identification of Anthelmintic Molecules in Terminalia leiocarpa (DC.) Baill. Molecules, 28(1). doi:10.3390/molecules28010076
  9. 9. Ngale Njume, F., Razzauti Sanfeliu, A., Soler García, M., Perschin, V., Fazeli, G., Bourez, A., Delporte, C., Ghogomu Mbigha, S., Poelvoorde, P., Pichard, S., Birck, C., Poterszman, A., Souopgui, J., Van Antwerpen, P., Stigloher, C., Vanhamme, L., & Laurent, P. (2022). A lipid transfer protein ensures nematode cuticular impermeability. iScience, 25(11), 105357. doi:10.1016/j.isci.2022.105357
  10. 10. Razzauti Sanfeliu, A., & Laurent, P. (2021). Ectocytosis prevents accumulation of ciliary cargo in C. elegans sensory neurons. eLife, 10. doi:10.7554/eLife.67670
  11. 11. Martineau, C., Brown, A. E. X., & Laurent, P. (2020). Multidimensional phenotyping predicts lifespan and quantifies health in Caenorhabditis elegans. PLoS computational biology, 16(7), e1008002. doi:10.1371/journal.pcbi.1008002
  12. 12. Lorenzo, R., Onizuka, M., Defrance, M., & Laurent, P. (2020). Combining single-cell RNA-sequencing with a molecular atlas unveils new markers for Caenorhabditis elegans neuron classes. Nucleic acids research. doi:10.1093/nar/gkaa486

  13. << Précédent 1 2 3 Suivant >>