Articles dans des revues avec comité de lecture (93)

  1. 1. Fiorini, S., Joret, G., Weltge, S., & Yuditsky, Y. (2025). Integer programs with bounded subdeterminants and two nonzeros per row. Journal of the Association for Computing Machinery, 72(1), 3.
  2. 2. Aprile, M., Fiorini, S., Joret, G., Kober, S., Seweryn, M. M., Weltge, S., & Yuditsky, Y. (2025). Integer programs with nearly totally unimodular matrices: the cographic case*. Proceedings of the annual ACM-SIAM Symposium on Discrete Algorithms, 2301-2312.
  3. 3. Aprile, M., Drescher, M., Fiorini, S., & Huynh, T. (2023). A 7/3-approximation algorithm for feedback vertex set in tournaments via Sherali–Adams. Discrete applied mathematics, 337, 149-160. doi:10.1016/j.dam.2023.04.016
  4. 4. Fiorini, S., Joret, G., Weltge, S., & Yuditsky, Y. (2022). Integer programs with bounded subdeterminants and two nonzeros per row. Annual Symposium on Foundations of Computer Science,, FOCS 2021 13-24. doi:10.1109/FOCS52979.2021.00011
  5. 5. Aprile, M. F., Fiorini, S., Huynh, T., Joret, G., & Wood, D. R. (2021). Smaller Extended Formulations for Spanning Tree Polytopes in Minor-closed Classes and Beyond. The electronic journal of combinatorics, 28(4), P4.47. doi:10.37236/10522
  6. 6. Fiorini, S., Huynh, T., Joret, G., & Muller, C. (2021). Unavoidable Minors for Graphs with Large ℓp -Dimension. Discrete & computational geometry, 66(1), 301-343. doi:10.1007/s00454-021-00285-5
  7. 7. Fiorini, S., Joret, G., & Schaudt, O. (2020). Improved approximation algorithms for hitting 3-vertex paths. Mathematical programming, 182(1-2), 355–367. doi:10.1007/s10107-019-01395-y
  8. 8. Conforti, M., Fiorini, S., Huynh, T., Joret, G., & Weltge, S. (2020). The stable set problem in graphs with bounded genus and bounded odd cycle packing number. Proceedings of the annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, 2896-2915. doi:10.1137/1.9781611975994.176
  9. 9. Fiorini, S., Huynh, T., & Weltge, S. (2020). Strengthening convex relaxations of 0/1-sets using Boolean formulas. Mathematical programming. doi:10.1007/s10107-020-01542-w
  10. 10. Bazzi, A., Fiorini, S., Pokutta, S., & Svensson, O. (2019). No small linear program approximates vertex cover within a factor 2 − Ε. Mathematics of operations research, 44(1), 147-172. doi:10.1287/moor.2017.0918
  11. 11. Aboulker, P., Fiorini, S., Huynh, T., Macchia, M., & Seif, J. (2019). Extension complexity of the correlation polytope. Operations research letters, 47(1), 47-51. doi:10.1016/j.orl.2018.12.001
  12. 12. Bazzi, A., Fiorini, S., Huang, S., & Svensson, O. (2019). Small extended formulation for knapsack cover inequalities from monotone circuits. Theory of computing, 14, 14. doi:10.4086/toc.2018.v014a014

  13. << Précédent 1 2 3 4 5 6 7 8 9 10 11 Suivant >>