Articles dans des revues avec comité de lecture (15)

  1. 1. Bamberg, J., Devillers, A., & Schillewaert, J. (2012). Weighted intriguing sets of finite generalised quadrangles. Journal of algebraic combinatorics, 36(1), 149-173. doi:10.1007/s10801-011-0330-4
  2. 2. Devillers, A., Giudici, M., Li, C. H., & Praeger, C. E. (2010). Some graphs related to the small Mathieu groups. European journal of combinatorics, 31, 335-348.
  3. 3. Devillers, A., Gramlich, R., & Muhlherr, B. (2009). The sphericity of the complex of non-degenerate subspaces. Journal of the London Mathematical Society, 79(3), 684-700. doi:10.1112/jlms/jdn088
  4. 4. Devillers, A., & Giudici, M. (2008). Involution graphs where the product of two adjacent vertices has order three. Australian Mathematical Society. Journal, 85, 305-322.
  5. 5. Devillers, A. (2008). A classification of finite partial linear spaces with a primitive rank 3 automorphism group of grid type. European journal of combinatorics, 29, 268-272.
  6. 6. Devillers, A., Giudici, M., Li, C. H., & Praeger, C. E. (2008). Primitive decompositions of Johnson graphs. Journal of combinatorial theory. Series A, 115(6), 925-966. doi:10.1016/j.jcta.2007.11.005
  7. 7. Devillers, A., & Muhlherr, B. (2007). On the simple connectedness of certain subsets of buildings. Forum mathematicum, 19(6), 955-970. doi:10.1515/FORUM.2007.037
  8. 8. Devillers, A., & van Maldeghem, H. (2007). Partial linear spaces built on hexagons. European journal of combinatorics, 28, 901-915.
  9. 9. Devillers, A., & Hall, J. I. (2006). Rank 3 Latin square designs. Journal of combinatorial theory. Series A, 113(5), 894-902. doi:10.1016/j.jcta.2005.06.004
  10. 10. Devillers, A. (2005). A classification of finite partial linear spaces with a primitive rank 3 automorphism group of almost simple type. Innovations in Incidence Geometry, 2, 129-175.
  11. 11. Devillers, A. (2003). Homogeneous and ultrahomogeneous Steiner systems. Journal of combinatorial designs, 11(3), 153-161. doi:10.1002/jcd.10034
  12. 12. Devillers, A. (2002). A classification of finite homogeneous semilinear spaces. Advances in geometry, 2(4), 307-328.

  13. << Précédent 1 2 Suivant >>