Ouvrages publiés à titre de seul auteur (1)

  1. 1. Leemans, D. (2008). Residually weakly primitive and locally two-transitive geometries for sporadic groups. Bruxelles: Académie royale de Belgique.
  2.   Ouvrages publiés en collaboration (1)

  3. 1. Buekenhout, F., Dehon, M., & Leemans, D. (1999). An atlas of residually weakly primitive geometries for small groups. Académie Royale de Belgique.
  4.   Parties d'ouvrages collectifs (1)

  5. 1. Buekenhout, F., Cara, P., Dehon, M., & Leemans, D. (2003). Residually weakly primitive geometries of small sporadic and almost simple groups: a synthesis. In Topics in Diagram Geometry (pp. 1-27).(Quad. Math.).
  6.   Articles dans des revues avec comité de lecture (109)

  7. 1. Leemans, D., & Toledo Roy, M. A. (2024). Faithful and thin non-polytopal maniplexes. Ars Mathematica contemporanea.
  8. 2. Leemans, D., Stokes, K., & Tranchida, P. A. (2024). On trialities and their absolute geometries. Advances in geometry.
  9. 3. Cameron, P., Fernandes, M. E., & Leemans, D. (2024). The number of string C-groups of high rank. Advances in mathematics.
  10. 4. De Saedeleer, J., Leemans, D., & Mulpas, J. (2024). A rank augmentation theorem for rank three string C-group representations of the symmetric groups. Journal of algebraic combinatorics, 59(2), 393-411. doi:10.1007/s10801-023-01291-x
  11. 5. Betten, A., Leemans, D., Muhlherr, B., Parkinson, J., Thas, K., & van Maldeghem, H. (2023). Preface [In memoriam: Jacques Tits]. Innovations in Incidence Geometry, 20(2-3), 63-64.
  12. 6. Leemans, D., & Stokes, K. (2023). Incidence geometries with trialities coming from maps with Wilson trialities. Innovations in Incidence Geometry, 20(2-3), 325-340.
  13. 7. Leemans, D., & Toledo Roy, M. A. (2023). Maniplexes with automorphism group PSL(2,q). Discrete mathematics, 346(9), 113527.
  14. 8. Cameron, P., Herman, A., & Leemans, D. (2022). String C-groups with real Schur index 2. Journal of pure and applied algebra, 226, 107025.
  15. 9. Leemans, D., & Mulpas, J. (2022). The string C-group representations of the Suzuki, Rudvalis and O'Nan sporadic groups. The art of discrete and applied mathematics, 5(3), #P3.09. doi:10.26493/2590-9770.1405.4ce

  16. << Précédent 1 2 3 4 5 6 7 8 9 10 11 Suivant >>