Parties d'ouvrages collectifs (1)

  1. 1. Cerf, C. (2000). The Topological Chirality of Knots and Links. In D. Bonchev & D. H. Rouvray (Eds.), Chemical topology: Applications and Techniques (pp. 1-34). Amsterdam, Netherlands: Gordon and Breach Science Publishers.(Mathematical chemistry, 6).
  2.   Articles dans des revues avec comité de lecture (16)

  3. 1. Cerf, C., & Stasiak, A. (2003). Linear relations between writhe and minimal crossing number in Conway families of ideal knots and links. New journal of physics, 5, 87.1-87.15.
  4. 2. Cerf, C., Castoldi, P., & Parker, M. (2003). La théorie des nœuds, une théorie... attachante ! Mathématique et pédagogie, 143, 33-58.
  5. 3. Jorissen, A., & Cerf, C. (2002). Asymmetric Photoreactions as the Origin of Biomolecular Homochirality: A Critical Review. Origins of Life and Evolution of Biospheres, 32(2), 129-142. doi:10.1023/A:1016087202273
  6. 4. Cerf, C. (2002). A Family of Impossible Figures Studied by Knot Theory. Visual Mathematics, 4(15).
  7. 5. Cerf, C., & Stasiak, A. (2000). A topological invariant to predict the three-dimensional writhe of ideal configurations of knots and links. Proceedings of the National Academy of Sciences of the United States of America, 97(8), 3795-3798. doi:10.1073/pnas.97.8.3795
  8. 6. Cerf, C., & Jorissen, A. (2000). Is amino-acid homochirality due to asymmetric photolysis in space? Space Science Reviews, 92(3-4), 603-612.
  9. 7. Cerf, C., & Maes, A. (2000). A family of brunnian links based on Edwards' construction of Venn diagrams. Journal of knot theory and its ramifications, 10(1), 97-107.
  10. 8. Cerf, C. (1998). A note on the tangle model for DNA recombination. Bulletin of mathematical biology, 60(1), 67-78. doi:10.1006/bulm.1997.0024
  11. 9. Cerf, C. (1998). Atlas of oriented knots and links. Topology Atlas Invited Contributions, 3, 1-32.
  12. 10. Cerf, C. (1997). Nullification writhe and chirality of alternating links. Journal of knot theory and its ramifications, 6(5), 621-632.
  13. 11. Cerf, C. (1997). NMR spectroscopy: From quantum mechanics to protein spectra. Concepts in Magnetic Resonance, 9(1), 17-41.

  14. << Précédent 1 2 Suivant >>