Parties d'ouvrages collectifs (4)

  1. 1. Dubois, F., Yourassowsky, C., Callens, N., Minetti, C., Queeckers, P., Podgorski, T., & Brandenburger, A.-N. (2011). Digital holographic microscopy working with a partially spatial coherent source. In P. Ferraro, A. Wax, & Z. Zalevsky (Eds.), Coherent light microscopy for imaging and quantitative phase analysis (pp. 31-59). Springer.
  2. 2. Legros, J. C., Dupont, O., Queeckers, P., & Schwabe, D. (1993). Marangoni-Bénard instability. In P. Sahm, M. Keller, & B. Schiewe (Eds.), Research program of the German Spacelab Mission D-2 (2 ed., pp. 280-282). Koln: WPF-DLR.
  3. 3. Schwabe, D., Dupont, O., Queeckers, P., & Legros, J. C. (1992). Experiments on Marangoni-Bénard instability problems under normal and microgravity conditions. In O. Minster (Ed.), Summary review of sounding rocket experiments in fluid science and materials sciences, Vol. 2. Final reports of sounding rocket experiments in fluid science and materials sciences (pp. 23-35). Paris: European Space Agency (ESA).
  4. 4. Legros, J. C., Dupont, O., Queeckers, P., Van Vaerenbergh, S., & Schwabe, D. (1990). Thermohydrodynamic instabilities and capillary flows. In R. L. Sani & J. N. Koster (Eds.), Low-gravity fluid dynamics and transport phenomena (pp. 207-239). AIAA.(Progress in Astronautics and Aeronautics Series, V-130).
  5.   Articles dans des revues avec comité de lecture (38)

  6. 1. Farina, D., Machrafi, H., Queeckers, P., Dongo, P. D., & Iorio, C. S. (2024). Innovative AI-Enhanced Ice Detection System Using Graphene-Based Sensors for Enhanced Aviation Safety and Efficiency. Nanomaterials, 14(13), 1135. doi:10.3390/nano14131135
  7. 2. Farina, D., Machrafi, H., Queeckers, P., Minetti, C., & Iorio, C. S. (2024). Water Recuperation from Regolith at Martian, Lunar & Micro-Gravity during Parabolic Flight. Aerospace, 11(6), 475. doi:10.3390/aerospace11060475
  8. 3. Farina, D., Mazio, M., Machrafi, H., Queeckers, P., & Iorio, C. S. (2024). Environmental Chamber Characterization of an Ice Detection Sensor for Aviation Using Graphene and PEDOT:PSS. Micromachines, 15(4), 504. doi:10.3390/mi15040504
  9. 4. Farina, D., Mazio, M., Machrafi, H., Queeckers, P., & Iorio, C. S. (2024). Wind Tunnel Characterization of a Graphene-Enhanced PEDOT:PSS Sensing Element for Aircraft Ice Detection Systems. Micromachines, 15(2), 198. doi:10.3390/mi15020198
  10. 5. Simanovskii, I., Nepomny Ashchy, A., Viviani, A., Queeckers, P., & Parente, A. (2023). Instabilities of a droplet on a liquid substrate heated from below under the action of vibration. International journal of non-linear mechanics, 152, 104387. doi:10.1016/j.ijnonlinmec.2023.104387
  11. 6. Simanovskii, I., Nepomny Ashchy, A., Viviani, A., Queeckers, P., & Parente, A. (2023). Shapes of floating droplets under non-uniform heating from below. Physics of fluids, 35(5), 052106. doi:10.1063/5.0148795
  12. 7. Dohet-Eraly, J., Zouaoui Boudjeltia, K., Rousseau, A., Queeckers, P., Lelubre, C., Desmet, J.-M., Chopard, B., Yourassowsky, C., & Dubois, F. (2022). Three-dimensional analysis of blood platelet spreading using digital holographic microscopy: a statistical study of the differential effect of coatings in healthy volunteers and dialyzed patients. Biomedical optics express, 13(1), 502-513. doi:https://doi.org/10.1364/BOE.448817
  13. 8. Barakhovskaia, E., Glushchuk, A., Queeckers, P., & Iorio, C. S. (2021). Stabilisation of condensate flow from curvilinear surfaces by means of porous media for space applications. Experimental thermal and fluid science, 121, 110283. doi:10.1016/j.expthermflusci.2020.110283

  14. << Précédent 1 2 3 4 5 6 7 8 9 Suivant >>