Articles dans des revues avec comité de lecture (26)

  1. 1. Tanouti, Y., Roovers, M., Wolff, P., Lechner, A., Van Elder, D., Feller, A., Soin, R., Gueydan, C., Kruys, V., Droogmans, L., & Labar, G. (2025). Structural insight into the novel Thermus thermophilus SPOUT methyltransferase RlmR catalysing Um2552 formation in the 23S rRNA A-loop: a case of convergent evolution. Nucleic acids research, 53(10). doi:10.1093/nar/gkaf432
  2. 2. Roovers, M. L., Labar, G., Wolff, P., Feller, A., Van Elder, D., Soin, R., Gueydan, C., Kruys, V., & Droogmans, L. (2022). The Bacillus subtilis open reading frame ysgA encodes the SPOUT methyltransferase RlmP forming 2'-O-methylguanosine at position 2553 in the A-loop of 23S rRNA. RNA, 28(9), 1185-1196. doi:10.1261/rna.079131.122
  3. 3. Dégut, C., Roovers, M., Barraud, P., Brachet, F., Feller, A., Larue, V., Al Refaii, A., Caillet, J., Droogmans, L., & Tisné, C. (2019). Structural characterization of B. subtilis m1A22 tRNA methyltransferase TrmK: insights into tRNA recognition. Nucleic acids research, 47(9), 4736-4750. doi:10.1093/nar/gkz230
  4. 4. Singh, R. K., Feller, A., Roovers, M., Van Elder, D., Wauters, L., Droogmans, L., & Versées, W. (2018). Structural and biochemical analysis of the dual-specificity Trm10 enzyme from Thermococcus kodakaraensis prompts reconsideration of its catalytic mechanism. RNA, 24(8), 1080-1092. doi:10.1261/rna.064345.117
  5. 5. Van Laer, B., Droogmans, L., Versées, W., Roovers, M., Wauters, L., Kasprzak, J. J., Dyzma, M., Deyaert, E., Singh, R. K., Feller, A., & Bujnicki, J. M. (2016). Structural and functional insights into tRNA binding and adenosine N1-methylation by an archaeal Trm10 homologue. Nucleic acids research, 44(2), 940-953. doi:10.1093/nar/gkv1369
  6. 6. Fayyad Kazan, M., Feller, A., Bodo, E., Boeckstaens, M., Marini, A. M., Dubois, E., & Georis, I. (2015). Yeast Nitrogen Catabolite Repression is sustained by signals distinct from glutamine and glutamate reservoirs. Molecular microbiology. doi:10.1111/mmi.13236
  7. 7. Feller, A., Georis, I., Tate, J., Cooper, T. G., & Dubois, E. (2013). Alterations in the Ure2 αcap domain elicit different gata factor responses to rapamycin treatment and nitrogen limitation. The Journal of biological chemistry, 288(3), 1841-1855. doi:10.1074/jbc.M112.385054
  8. 8. Georis, I., Tate, J., Feller, A., Cooper, T. G., & Dubois, E. (2011). Intranuclear function for protein phosphatase 2A: Pph21 and Pph22 are required for rapamycin-induced GATA factor binding to the DAL5 promoter in yeast. Molecular and cellular biology, 31(1), 92-104. doi:10.1128/MCB.00482-10
  9. 9. Georis, I., Feller, A., Vierendeels, F., & Dubois, E. (2009). The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repression-sensitive gene activation. Molecular and cellular biology, 29(13), 3803-3815. doi:10.1128/MCB.00399-09
  10. 10. Georis, I., Feller, A., Tate, J., Cooper, T. G., & Dubois, E. (2009). Nitrogen catabolite repression-sensitive transcription as a readout of Tor pathway regulation: the genetic background, reporter gene and GATA factor assayed determine the outcomes. Genetics, 181(3), 861-874. doi:10.1534/genetics.108.099051
  11. 11. Tate, J., Georis, I., Feller, A., Dubois, E., & Cooper, T. G. (2009). Rapamycin-induced Gln3 dephosphorylation is insufficient for nuclear localization: Sit4 and PP2A phosphatases are regulated and function differently. The Journal of biological chemistry, 284(4), 2522-2534. doi:10.1074/jbc.M806162200
  12. 12. Tate, J., Feller, A., Dubois, E., & Cooper, T. G. (2006). Saccharomyces cerevisiae Sit4 phosphatase is active irrespective of the nitrogen source provided, and Gln3 phosphorylation levels become nitrogen source-responsive in a sit4-deleted strain. The Journal of biological chemistry, 281(49), 37980-37992. doi:10.1074/jbc.M606973200

  13. << Précédent 1 2 3 Suivant >>