Articles dans des revues avec comité de lecture (25)

  1. 1. Roovers, M. L., Labar, G., Wolff, P., Feller, A., Van Elder, D., Soin, R., Gueydan, C., Kruys, V., & Droogmans, L. (2022). The Bacillus subtilis open reading frame ysgA encodes the SPOUT methyltransferase RlmP forming 2'-O-methylguanosine at position 2553 in the A-loop of 23S rRNA. RNA, 28(9), 1185-1196. doi:10.1261/rna.079131.122
  2. 2. Dégut, C., Roovers, M., Barraud, P., Brachet, F., Feller, A., Larue, V., Al Refaii, A., Caillet, J., Droogmans, L., & Tisné, C. (2019). Structural characterization of B. subtilis m1A22 tRNA methyltransferase TrmK: insights into tRNA recognition. Nucleic acids research, 47(9), 4736-4750. doi:10.1093/nar/gkz230
  3. 3. Singh, R. K., Feller, A., Roovers, M., Van Elder, D., Wauters, L., Droogmans, L., & Versées, W. (2018). Structural and biochemical analysis of the dual-specificity Trm10 enzyme from Thermococcus kodakaraensis prompts reconsideration of its catalytic mechanism. RNA, 24(8), 1080-1092. doi:10.1261/rna.064345.117
  4. 4. Van Laer, B., Droogmans, L., Versées, W., Roovers, M., Wauters, L., Kasprzak, J. J., Dyzma, M., Deyaert, E., Singh, R. K., Feller, A., & Bujnicki, J. M. (2016). Structural and functional insights into tRNA binding and adenosine N1-methylation by an archaeal Trm10 homologue. Nucleic acids research, 44(2), 940-953. doi:10.1093/nar/gkv1369
  5. 5. Fayyad Kazan, M., Feller, A., Bodo, E., Boeckstaens, M., Marini, A. M., Dubois, E., & Georis, I. (2015). Yeast Nitrogen Catabolite Repression is sustained by signals distinct from glutamine and glutamate reservoirs. Molecular microbiology. doi:10.1111/mmi.13236
  6. 6. Feller, A., Georis, I., Tate, J., Cooper, T. G., & Dubois, E. (2013). Alterations in the Ure2 αcap domain elicit different gata factor responses to rapamycin treatment and nitrogen limitation. The Journal of biological chemistry, 288(3), 1841-1855. doi:10.1074/jbc.M112.385054
  7. 7. Georis, I., Tate, J., Feller, A., Cooper, T. G., & Dubois, E. (2011). Intranuclear function for protein phosphatase 2A: Pph21 and Pph22 are required for rapamycin-induced GATA factor binding to the DAL5 promoter in yeast. Molecular and cellular biology, 31(1), 92-104. doi:10.1128/MCB.00482-10
  8. 8. Georis, I., Feller, A., Vierendeels, F., & Dubois, E. (2009). The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repression-sensitive gene activation. Molecular and cellular biology, 29(13), 3803-3815. doi:10.1128/MCB.00399-09
  9. 9. Georis, I., Feller, A., Tate, J., Cooper, T. G., & Dubois, E. (2009). Nitrogen catabolite repression-sensitive transcription as a readout of Tor pathway regulation: the genetic background, reporter gene and GATA factor assayed determine the outcomes. Genetics, 181(3), 861-874. doi:10.1534/genetics.108.099051
  10. 10. Tate, J., Georis, I., Feller, A., Dubois, E., & Cooper, T. G. (2009). Rapamycin-induced Gln3 dephosphorylation is insufficient for nuclear localization: Sit4 and PP2A phosphatases are regulated and function differently. The Journal of biological chemistry, 284(4), 2522-2534. doi:10.1074/jbc.M806162200
  11. 11. Tate, J., Feller, A., Dubois, E., & Cooper, T. G. (2006). Saccharomyces cerevisiae Sit4 phosphatase is active irrespective of the nitrogen source provided, and Gln3 phosphorylation levels become nitrogen source-responsive in a sit4-deleted strain. The Journal of biological chemistry, 281(49), 37980-37992. doi:10.1074/jbc.M606973200
  12. 12. Feller, A., Boeckstaens, M., Marini, A. M., & Dubois, E. (2006). Transduction of the nitrogen signal activating Gln3-mediated transcription is independent of Npr1 kinase and Rsp5-Bul1/2 ubiquitin ligase in Saccharomyces cerevisiae. The Journal of biological chemistry, 281(39), 28546-28554. doi:10.1074/jbc.M605551200

  13. << Précédent 1 2 3 Suivant >>