Résumé : A method for both calibration and validation of a 6 DOF electrogoniometer is presented. A 6 Revolute Instrumented Spatial Linkage (6R-ISL) and a three-dimensional digitizer (3DD) were used simultaneously to collect both static and continuous poses of unconstrained or constrained motions. Validation occurred using a calibrated ball-and-socket joint. A parametrical model of the 6R-ISL (i.e. Virtual Goniometer or VG) was designed using a standard multibody system geometry. Two approaches were used to adjust the VG parameters: a parametrical adjustment of the VG linkage geometry, and a functional adjustment of the potentiometer calibration curves (angle-voltage) in a predefined range of motion. After calibration, 6R-ISL accuracy was better than 1 mm and 1 degrees for translation and orientation, respectively. The functional method presented in this paper can be suggested as a practical approach, which allows on-line checking and calibration of 6R-ISL within the specific range of interest of a particular anatomical joint. In addition, improving the potentiometer calibration curves was less time consuming than the parametrical adjustment.