Résumé : The generation of C2- and C3-deuterated L-lactate was monitored by 13C NMR in human erythrocytes exposed to D-[1-13C]glucose, D-[2-13C]glucose or D-[6-13C]glucose and incubated in a medium prepared in D2O. The results suggested that the deuteration of the C1 of D-fructose 6-phosphate in the phosphoglucoisomerase reaction, the deuteration of the C1 of D-glyceraldehyde-3-phosphate in the sequence of reactions catalyzed by triose phosphate isomerase and aldolase and the deuteration of the C3 of pyruvate in the reaction catalyzed by pyruvate kinase were all lower than expected from equilibration with D2O. Moreover, about 40% of the molecules of pyruvate generated by glycolysis apparently underwent deuteration on their C3 during interconversion of the 2-keto acid and L-alanine in the reaction catalyzed by glutamate-pyruvate transaminase. The occurrence of the latter process was also documented in cells exposed to exogenous [3-13C]pyruvate. This methodological approach is proposed to provide a new tool to assess in intact cells the extent of back-and-forth interconversion of selected metabolic intermediates.