Article révisé par les pairs
Résumé : This study aims at establishing the contribution of alpha- and beta-D-glucose to the total generation of (3)HOH by rat pancreatic islets exposed to D-[2 - (3)H]glucose or D-[5 - (3)H] glucose at anomeric equilibrium. The islets were incubated for 60 min at 4 degrees C in the presence of equilibrated D-glucose (2.8 and 8.3 mM) mixed with tracer amounts of either alpha- or beta-D-glucose labelled with tritium on either the C (2) or C (5) of the hexose. Relative to their respective concentrations, (3)HOH generation from the anomers labelled with tritium on the C (2) or C (5) of the hexose provided beta/alpha ratios comparable to those previously found at both 2.8 and 8.3 mM, when the islets were exposed to each anomer separately. The relative contributions of each anomer to the total generation of (3)HOH was also close to the theoretical values derived from mathematical models for the catabolism of D-glucose at anomeric equilibrium in rat islets at both 2.8 and 8.3 mM and in the case of both D-[2 - (3)H]glucose and D-[5 - (3)H]glucose. Thus, even in islets exposed to D-glucose at anomeric equilibrium, the metabolic fate of alpha-D-glucose differs vastly from that of beta-D-glucose, the enzyme-to-enzyme channelling between hexokinase isoenzymes, especially glucokinase, and phosphoglucoisomerase being restricted to alpha-D-glucose 6-phosphate.