Résumé : Recombinant human interferon-alpha (IFN-alpha) can induce a hematologic remission in patients with chronic myeloid leukemia. However, some patients are resistant and others develop late resistance to the IFN-alpha treatment. To understand the molecular mechanism of this resistance, we have analyzed the expression of 10 IFN-inducible genes in the cells of three resistant patients, two responsive patients, and six healthy controls. Northern blot hybridizations showed that all the genes were induced in in vitro IFN-alpha treated peripheral blood cells of the patients and healthy controls. These genes were also inducible in peripheral blood and bone marrow cells of two out of two resistant patients administered an injection of IFN-alpha. We conclude that the resistance to the IFN-alpha treatment of the chronic myeloid leukemia patients we studied is not due to (1) the absence of induction of any of the 10 IFN-inducible genes we studied, including the low-molecular-weight 2'-5'oligoadenylate synthetase; (2) the presence of an antagonist of IFN-alpha in the peripheral blood or bone marrow cells; and (3) the presence of neutralizing anti-IFN-alpha antibodies.