Article révisé par les pairs
Résumé : Recent advances in the understanding of the neurobiological basis of alcohol dependence suggest that the endocannabinoid system may play a key role in the reinforcing effects of ethanol. In the present study, disruption of CB1 receptors in mice generated on a CD1 background decreased both ethanol consumption and preference. This decreased ethanol self-administration was associated with increased sensitivity to the acute intoxicating effects of ethanol. Mutant mice were more sensitive to the hypothermic and sedative/hypnotic effects of acute ethanol administration (1.5-4.0 g/kg), although plasma ethanol concentrations did not differ from those of controls. Moreover, wild-type mice exhibited normal locomotor activation caused by 1.0-2.5 g/kg injection of ethanol, whereas mutant mice displayed sedation in response to the injection of the same ethanol doses. The severity of alcohol withdrawal-induced convulsions was also increased in CB1(-/-) mice. Our results suggest that CB1 receptors participate in the regulation of ethanol drinking and demonstrate that their disruption lead to increased ethanol sensitivity and withdrawal severity.