par Perez-Morga, David ;Amiguet Vercher, Amélia ;Vermijlen, David ;Pays, Etienne
Référence The Journal of eukaryotic microbiology, 48, 2, page (221-226)
Publication Publié, 2001-03
Article révisé par les pairs
Résumé : The genome of Trypanosoma brucei contains about 120 chromosomes, which do not visibly condense during mitosis. We have analyzed the organization and segregation of these chromosomes by in situ hybridization using fluorescent telomere probes. At the onset of mitosis, telomeres migrate from their nuclear peripheral location and congregate into a central zone. This dense group of telomeres then splits into two entities that migrate to opposite nuclear poles. Segregation continues until the double-sized nucleus divides and, before cytokinesis occurs, the telomeres reorganize into the discrete foci observed at interphase. During migration, the telomeres are located at the free end of the mitotic spindle. Treatment with the microtubule polymerization inhibitor rhizoxin prevents telomere clustering and chromosomal segregation. In the insect-specific procyclic form as well as in the non-dividing bloodstream stumpy form, telomeres tend to cluster close to the nuclear periphery at interphase. In contrast, in the proliferative bloodstream slender form the telomeres preferentially locate in the central zone of the nucleus. Thus, telomeres are closer to the nuclear periphery during those life cycle stages where the telomeric expression sites for the variant surface glycoprotein are all inactive, suggesting that transcriptional inactivation of these sites is related to their subnuclear localization.