par Gelens, Lendert;Parra-Rivas, Pedro ;Leo, François ;Gomila, Damià;Matías, Manuel A.;Coen, Stéphane
Référence Proceedings of SPIE - The International Society for Optical Engineering, 9136, 91360J
Publication Publié, 2014
Article révisé par les pairs
Résumé : The Lugiato-Lefever equation (LLE) has been extensively studied since its derivation in 1987, when this meanfield model was introduced to describe nonlinear optical cavities. The LLE was originally derived to describe a ring cavity or a Fabry-Perot resonator with a transverse spatial extension and partially filled with a nonlinear medium but it has also been shown to be applicable to other types of cavities, such as fiber resonators and microresonators. Depending on the parameters used, the LLE can present a monostable or bistable input-output response curve. A large number of theoretical studies have been done in the monostable regime, but the bistable regime has remained widely unexplored. One of the reasons for this was that previous experimental setups were not able to works in such regimes of the parameter space. Nowadays the possibility of reaching such parameter regimes experimentally has renewed the interest in the LLE. In this contribution, we present an in-depth theoretical study of the different dynamical regimes that can appear in parameter space, focusing on the dynamics of localized solutions, also known as cavity solitons (CSs). We show that time-periodic oscillations of a 1D CS appear naturally in a broad region of parameter space. More than this oscillatory regime, which has been recently demonstrated experimentally,1 we theoretically report on several kinds of chaotic dynamics. We show that the existence of CSs and their dynamics is related with the spatial dynamics of the system and with the presence of a codimension-2 point known as a Fold-Hopf bifurcation point. These dynamical regimes can become accessible by using devices such as microresonators, for instance widely used for creating optical frequency combs. © 2015 SPIE.