Résumé : Morphometric analysis has proven to be an effective tool for distinguishing among phytolith assemblages produced by closely related plant taxa. Elongate dendritic epidermal phytoliths are produced in the inflorescence bracts of many cereal species. Under light microscopy, these articulated dendritic phytoliths produce wave patterns between the margins of the cells that are reported to have taxonomic significance. In this study we explore morphometric variance among the lobes of the wave patterns formed by the articulated dendritic phytoliths within selected species of cereals as a first step towards understanding the variance between species. We found that there is often significant variance in dendritic wave lobes among different accessions of a species, among the different types of inflorescence bracts of the species (glumes, lemmas and paleae), and among each bract type’s location on the inflorescence (upper, middle and lower third of inflorescence spike or panicle). We observed that shape morphometries are typically more reliable and require a smaller sample size for statistical confidence than size morphometries. We further observed that adequate samples sizes for analysis of several shape morphometries of articulated dendritic wave lobes are considerably smaller than those reported to be required for analysis of the same morphometries of individual or isolated dendritic phytoliths. To gain a preliminary sense whether there is potential for discriminating between taxa in light of the significant variance within species, we compared our data to archaeological material from the historical center of Brussels. We demonstrate that while there is considerable variance in the morphometries among accessions, bract types and inflorescence locations within each species, there may yet be potential for discriminating between cereal species in archaeological samples by the morphometries of their dendritic phytolith wave lobes. We present one possible paradigm for conducting such analysis on archaeological material.