par Basios, Vasileios
Référence The European physical journal. Special topics, 225, 6-7, page (1219-1229)
Publication Publié, 2016-09
Article révisé par les pairs
Résumé : A novel case of probabilistic coupling for hybrid stochastic systems with chaotic components via Markovian switching is presented. We study its stability in the norm, in the sense of Lyapunov and present a quantitative scheme for detection of stochastic stability in the mean. In particular we examine the stability of chaotic dynamical systems in which a representative parameter undergoes a Markovian switching between two values corresponding to two qualitatively different attractors. To this end we employ, as case studies, the behaviour of two representative chaotic systems (the classic Rössler and the Thomas-Rössler models) under the influence of a probabilistic switch which modifies stochastically their parameters. A quantitative measure, based on a Lyapunov function, is proposed which detects regular or irregular motion and regimes of stability. In connection to biologically inspired models (Thomas-Rössler models), where strong fluctuations represent qualitative structural changes, we observe the appearance of stochastic resonance-like phenomena i.e. transitions that lead to orderly behavior when the noise increases. These are attributed to the nonlinear response of the system.