Résumé : In this study several flavonoids were tested for their potential to regenerate the (pseudo-)halogenating activity (hypothiocyanite formation) of the heme peroxidases lactoperoxidase (LPO) and myeloperoxidase (MPO) after hydrogen peroxide-mediated enzyme inactivation. Several flavonoid subclasses with varying hydroxylation patterns (especially of the flavonoid B-ring) were examined in order to identify structural properties of efficient enzyme regenerators. Kinetic parameters and second-order rate constants were determined. A 3',4'-dihydroxylated B-ring together with C-ring saturation and hydroxylation were found to be important structural elements, which strongly influence the flavonoid binding and oxidizability by the LPO/MPO redox intermediates Compounds I and II. In combination with docking studies these results allow an understanding of the differences between flavonoids that promote the hypothiocyanite production by LPO and MPO and those that inhibit this enzymatic reaction.