Résumé : Cette thèse de doctorat a pour cadre l’expérience CMS auprès du grand collisionneur de protons du CERN, le LHC. Le LHC, qui a permis la découverte en 2012 du boson de Brout-Englert-Higgs, est destiné à fonctionner pour encore 20 ans, avec une luminosité qui croîtra progressivement pour atteindre d’ici 2025 la valeur de 7.5 x 10^34 cm^-2 s^-1, c'est à dire environ cinq fois la valeur initialement prévue. Ceci a pour conséquence que les expériences doivent s’adapter et mettre à niveau une série de leurs composants et détecteurs. Une des prochaines mises à niveau de l’expérience CMS concerne les détecteurs Triple Gas Electron Multiplier (GEM) qui sont actuellement en développement pour la partie avant du spectromètre à muons de l’expérience. Ces détecteurs seront installés dans CMS durant le deuxième long arrêt du LHC, en 2018-2019, appelé LS2. Cette mise à niveau a pour but de contrôler les taux de déclenchement d’événements pour la détection de muons, grâce à la haute performance de ces détecteurs Triple GEM en présence de taux de particules extrêmement élevés (>1 kHz/cm^2). De plus, grâce à sa très bonne résolution spatiale (~250 um), la technologie GEM peut améliorer la reconstruction des traces de muons et la capacité d’identification du détecteur avant.Le but de mon travail de recherche est d’estimer la sensitivité des Triple GEMs à l’environnement de radiation hostile dans CMS, essentiellement composé de neutrons et de photons produits lors des interactions entre les particules et les détecteurs constituant l’expérience CMS. L’estimation précise de cette sensitivité est très importante, car une sous-estimation pourrait avoir des effets désastreux pour l’efficacité des Triple GEMs une fois installés dans CMS. Pour valider mes simulations, j’ai également reproduit des résultats expérimentaux obtenus avec d’autres détecteurs similaires déjà installés dans CMS, tels que les Resistive Plate Chambers (RPC).La deuxième partie de mon travail concerne l’étude de la capacité de l’expérience CMS à discerner différents modèles de nouvelle physique prédisant l’existence de bosons vecteurs, appelés Z'. Ces modèles font partie des extensions plausibles du Modèle Standard. En particulier, l’analyse se concentre sur des simulations dans lesquelles le Z' se désintègre en deux muons, et sur l’impact que les mises à niveau avec les détecteurs Triple GEM apporteront à ces mesures tout le long de la phase de haute intensité du LHC. Mes simulations montrent que plus de 20% des événements simulés comptent au moins un muon dans la région en pseudo-rapidité (eta) de CMS couverte par les détecteurs Triple GEM. Les résultats préliminaires démontrent que, dans le case de modèles à 3 TeV/c^2, il sera possible dès la fin de la Phase I de distinguer un Z'I d'un Z'SSM avec un niveau de signification alpha > 3 sigma.
This PhD thesis takes place in the CMS experiment at CERN's Large Hadron Collider (LHC). The LHC allowed the discovery of the Brout-Englert-Higgs boson in 2012, and is designed to run for at least 20 years, with an increasing luminosity that will reach by 2025 a value of 7.5 x 10^34 cm^-2 s^-1, that is a yield five times greater than the one initially intended. As a consequence, the experiments must adapt and upgrade many of their components and particle detectors. One of the foreseen upgrades of the CMS experiment concerns the Triple Gas Electron Multiplier (GEM) detectors, currently in development for the forward muon spectrometer. These detectors will be installed in CMS during the second long LHC shutdown (LS2), in 2018-2019. The aim of this upgrade is to better control the event trigger rate at Level 1 for muon detection, thanks to the high performance of these Triple GEM detectors, in presence of very high particle rates (>1 kHz/cm^2). Moreover, thanks to its excellent spatial resolution (~250 um), the GEM technology can improve the muon track reconstruction and the identification capability of the forward detector.The goal of my research is to estimate the sensitivity of Triple GEMs to the hostile background radiation in CMS, essentially made of neutron and photons generated by the interaction between the particles and CMS detectors. The accurate evaluation of this sensitivity is very important, as an underestimation could have ruinous effects of the Triple GEMs efficiency, once they are installed in CMS. To validate my simulations, I have reproduced experimental results obtained with similar detectors already installed in CMS, such as the Resistive Plate Chambers (RPC).The second part of my work regards the study of the CMS experiment capability to discriminate between different models of new physics predicting the existence of neutral vector bosons called Z'. These models belong to plausible extensions of the Standard Model. In particular, the analysis is focused on simulated samples in which the Z' decays in two muons, and on the impact that the Triple GEM detectors upgrades will bring to these measurements during the high luminosity phase of the LHC, called Phase II. My simulations prove that more than 20% of the simulated events see at least one muon in the CMS pseudo-rapidity (eta) region covered by Triple GEM detectors. Preliminary results show that, in the case of 3 TeV/c^2 models, it will be possible already at the end of Phase I to discriminate a Z'I from a Z'SSM with a significance level alpha > 3 sigma.