par Souidi, Abdelkader ;Hou, Marc ;Becquart, Charlotte S.;Domain, Christophe;De Backer, A.
Référence Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms, 352, page (51-55)
Publication Publié, 2015-06
Article révisé par les pairs
Résumé : We have used an Object Kinetic Monte Carlo (OKMC) model to simulate the long term evolution of the primary damage in Fe70Cr20Ni10 alloys. The mean number of Frenkel pairs created by different Primary Knocked on Atoms (PKA) was estimated by Molecular Dynamics using a ternary EAM potential developed in the framework of the PERFORM-60 European project. This number was then used to obtain the vacancy-interstitial recombination distance required in the calculation of displacement cascades in the Binary Collision Approximation (BCA) with code MARLOWE (Robinson, 1989). The BCA cascades have been generated in the 10-100 keV range with the MARLOWE code and two different screened Coulomb potentials, namely, the Molière approximation to the Thomas-Fermi potential and the so-called "Universal" potential by Ziegler, Biersack and Littmark (ZBL). These cascades have been used as input to the OKMC code LAKIMOCA (Domain et al., 2004), with a set of parameters for describing the mobility of point defect clusters based on ab initio calculations and experimental data. The cluster size distributions have been estimated for irradiation doses of 0.1 and 1 dpa, and a dose rate of 10-7 dpa/s at 600 K. We demonstrate that, like in the case of BCC iron, cluster size distributions in the long term are independent of the cascade energy and that the recursive cascade model suggested for BCC iron in Souidi et al. (2011) also applies to FCC Fe70Cr20Ni10. The results also show that the influence of the BCA potential is sizeable but the qualitative correspondence in the predicted long term evolution is excellent.