par Gloria, Antoine ;Habibi, Zakaria
Référence Foundations of computational mathematics, 16, 1, page (217-296)
Publication Publié, 2016-02
Article révisé par les pairs
Résumé : This paper is the follow-up of Gloria (Math Models Methods Appl Sci 21(8):1601–1630, 2011). One common drawback among numerical homogenization methods is the presence of the so-called resonance error, which roughly speaking is a function of the ratio ε/ρ, where ρ is a typical macroscopic lengthscale and ε is the typical size of the heterogeneities. In the present work, we make a systematic use of regularization and extrapolation to reduce this resonance error at the level of the approximation of homogenized coefficients and correctors for general non-necessarily symmetric stationary ergodic coefficients. We quantify this reduction for the class of periodic coefficients, for the Kozlov subclass of almost-periodic coefficients, and for the subclass of random coefficients that satisfy a spectral gap estimate (e.g., Poisson random inclusions). We also report on a systematic numerical study in dimension 2, which demonstrates the efficiency of the method and the sharpness of the analysis. Last, we combine this approach to numerical homogenization methods, prove the asymptotic consistency in the case of locally stationary ergodic coefficients, and give quantitative estimates in the case of periodic coefficients.