Résumé : Polyfluorenes are polymers with outstanding properties: They are semi-conducting, relatively rigid, quite stable chemically and thermally, easily substituted and therefore potentially soluble in numerous solvents and more importantly, they exhibit blue electro- and photoluminescence. For all these reasons, these polymers are the subjects of numerous academic and industrial researches.

The first subject of this work deal with the design, the synthesis and the characterisation of polyfluorenes end-capped with perylene dicarboximide derivatives. These perylene moieties are able to interact by energy transfer under specific conditions of illumination, proximity and orientation. Their observation by single molecule spectroscopy permitted therefore to gain valuable information concerning the three-dimensional folding of single polyfluorene chains. To complete this study, the synthesis and characterisation of a perylene end-capped trimer of fluorene was performed. This structure being monodisperse, a finer analysis of the energy-transfer occurring between both perylene dyes could be accomplished, which confirmed the structural hypothesis made for the polymer. During these studies, it has been observed that, in addition to the energy transfer occurring between both perylene derivatives, another energy transfer occurs between the polyfluorene backbone and the perylene derivatives upon excitation of the first. This led to the idea of the synthesis of a polyfluorene bearing perylenes dicarboximide as side chains. This perylene-rich polyfluorene has been used to build a photovoltaic cell efficient in the wavelengths of both polyfluorene absorption and perylene carboximide absorption.

Another subject of this work was the design, synthesis and characterisation of polyfluorenes bearing bulky phenoxy groups as side-chains. These polymers, due to their lower tendency toward aggregation, exhibited a better stability of their emission colour upon annealing. Similarly, a series of homo- and copolymers of fluorene bearing bulky and hole accepting triphenylamine substituants was synthesised and characterised. In addition to their improved colour stability in comparison with dialkylpolyfluorenes, the LEDs build with these materials exhibited a very low turn on voltage.