Résumé : La progression à travers le cycle cellulaire est assurée par l’activation séquentielle d’une série de complexes cycline-CDK. Les complexes cycline D-CDK4 assurent la progression au cours de la phase G1 du cycle cellulaire en phosphorylant les protéines « antioncogéniques » de la famille Rb. L’activation de la CDK4 nécessite son association à une cycline D et sa phosphorylation sur Thr172 par la CAK nucléaire (CDK activating kinase). Le rôle essentiel des protéines de la famille Cip/Kip dans la régulation de l’activité de ces complexes reste controversé. Les protéines de cette famille (comprenant p27 et p21) ont initialement été identifiées comme des inhibiteurs puissants des complexes cycline-CDK et comme les intermédiaires de l’action antimitogénique de différents signaux intra ou extra-cellulaires. Il a été proposé que la liaison de la p27 ou de la p21 aux complexes cycline D-CDK4 empêche leur phosphorylation activatrice par la CAK et leur activité pRb kinase. Cependant, l’observation que des complexes cycline D-CDK4 associés à p21/p27 possèdent une activité pRb kinase a donné naissance à une seconde hypothèse sur la régulation de ces complexes par la p27 ou la p21. Ces « inhibiteurs » ont été paradoxalement proposés comme facteurs nécessaires et suffisants d’assemblage et de localisation nucléaire des complexes cycline D-CDK4. Dans le modèle physiologiquement relevant des thyrocytes de chien en culture primaire, la mitogénèse dépendante de l’AMPc activée par la TSH diffère des cascades des facteurs de croissance puisqu’elle n’induit pas les cyclines D mais au contraire augmente l’accumulation de l’«inhibiteur» de CDK p27. L’AMPc stimule l’assemblage des complexes cycline D3-CDK4, leur translocation nucléaire et leur association à p27. Dans ce modèle, le TGF inhibe la mitogénèse dépendante de l’AMPc en inhibant la translocation nucléaire des complexes cycline D3-CDK4 et leur association à la p27.

Nous avons étudié l’activité catalytique et l’activation des complexes cycline D3-CDK4-p27 issus des thyrocytes de chien en culture primaire ou produits en cellules d’eucaryotes supérieurs (CHO et Sf9). Nous avons pu montrer que les complexes cycline D3-CDK4-p27 issus des thyrocytes de chien stimulés par la TSH présentent une activité pRb-kinase qui est inhibée par le TGF. En outre, la production des complexes cycline D3-CDK4-p27 en cellules CHO ou Sf9 nous a permis de montrer que l’impact de la p27 sur l’activité catalytique des complexes cycline D3-CDK4 dépend de sa stoechiométrie de liaison à ces complexes. L’analyse du profil de séparation par électrophorèse bidimensionnelle de la CDK4 issue de ces trois systèmes montre que la p27 n’empêche pas la phosphorylation activatrice de la CDK4, même aux concentrations de p27 qui empêchent l’activité pRb kinase du complexe cycline D3-CDK4. Nous avons également montré dans les cellules CHO que la p27 détermine la localisation nucléaire des complexes cycline D3-CDK4, ceux-ci étant relocalisés dans le cytoplasme par la transfection d’un mutant de la p27 dépourvu de son signal de localisation nucléaire. Ces résultats valident les observations réalisées par immunofluorescence dans les thyrocytes de chien dans lesquels nous avons mis en évidence une étroite corrélation au niveau des cellules individuelles stimulées par la TSH entre la translocation nucléaire de la CDK4 et l’apparition de la p27 nucléaire. Cette colocalisation est partiellement inhibée par le TGF. Ces observations renforcent l’hypothèse d’un rôle de la p27 dans l’ancrage nucléaire des complexes cycline D3-CDK4.

Alors que la localisation de la CAK est considérée comme exclusivement nucléaire et son activité catalytique constitutive, nous avons pu montrer que la phosphorylation activatrice de la CDK4 associée à la cycline D3 n’est pas affectée par sa localisation sub-cellulaire et qu’elle est régulée par le TGF dans les thyrocytes de chien et par le sérum dans les cellules T98G indépendamment de l’association de la CDK4 à la p27. De plus, la phosphorylation de la CDK4 sur Thr172 dans les cellules T98G est stimulée par le sérum, alors que la phosphorylation activatrice de la CDK6, son homologue fonctionnel, ne l’est pas. La comparaison de la séquence de ces deux CDKs à proximité des Thr phosphorylées (Thr177 pour la CDK6) révèle, outre une forte similarité de séquence, une différence au niveau de l’acide aminé situé en aval de la thréonine : il s’agit d’une proline dans la CDK4 et d’une sérine dans la CDK6. La mutation P173S de la CDK4 abolit la phosphorylation sur Thr172 et l’activité de la CDK4 associée à la cycline D3 dans les cellules CHO, mais n’affecte pas la phosphorylation et l’activation de la CDK4 par la CAK recombinante in vitro. L’ensemble de ces résultats suggère que la/les CAKs régulée(s) responsables de l’activation de la CDK4 n’ont pas encore été identifiées et que la proline située en aval de la Thr172 de la CDK4 est essentielle pour sa phosphorylation activatrice et son activité pRb kinase.