Résumé : The biological membrane surrounding the living cell provides a sealed barrier that tightly regulates the interactions with the outside environment. A large number of integral membrane proteins mediate these interactions and are involved in a wide variety of biological processes. An increasing number of studies have led to the conclusion that lipids provide more than a hydrophobic solvent for membrane proteins, and that interactions between lipids and proteins are required to allow protein function. ABC transporters are one of the most important family of membrane proteins. However, the importance of their lipidic environment is largely unknown. Only a few studies showed that their activity was dependent on the lipidic composition of the surrounding bilayer. The bacterial ABC transporter HorA was used as a model to probe the influence of the lipidic environment on that class of membrane proteins.

HorA is a multidrug transporter expressed in Lactobacillus brevis, a Gram-positive beer spoilage bacterium. It turned out that phosphatidylethanolamine (PE) was indispensable to maintain both the activity and the structural integrity of HorA.

Surprisingly, replacement of PE by the chemically related PC (phosphatidylcholine) did not led to the suppression of HorA activity, but to an unexpected phenotype. Whereas the cytoplasmic domains of HorA were still able to hydrolyze ATP, the membrane parts of the transporter were unable to use that energy to mediate substrate transport. Using several biophysical methods particularly adapted to the study of reconstituted systems, we showed that the structure of HorA is strongly altered by this lipid replacement. In particular, the structural organization of the transmembrane domains of the protein is strongly affected.