Résumé : La maladie d’Alzheimer est la maladie neurodégénérative la plus fréquente dans le monde industrialisé. Sur le plan neuropathologique, cette maladie est caractérisée par deux types de lésions : les plaques séniles et les dégénérescences neurofibrillaires.

Des observations morphologiques précédentes ont permis de mettre en évidence des anomalies du transport axoplasmique dans les neurones chez les patients atteints de la maladie d’Alzheimer. Les mécanismes menant à cette perturbation du transport axoplasmique ne sont pas encore bien établis. La glycogen synthase kinase-3β (GSK-3β) et la cyclin-dependent kinase 5 (Cdk5) associée à son activateur pathologique p25, sont deux kinases clés dont la dérégulation intervient dans la pathogenèse de la maladie d’Alzheimer (MA). Nous avons émis l'hypothèse que ces kinases pourraient jouer un rôle dans la perturbation du transport axoplasmique dans cette maladie.

Dans la première partie de notre travail, nous nous sommes intéressés à l’effet de la GSK-3β et de Cdk5/p25 sur la croissance des neurites (un processus dépendant du transport axoplasmique) dans un modèle cellulaire, les PC12 différenciées prétraitées au NGF.

La surexpression de GSK-3β et de p25 provoque une importante réduction de la croissance neuritique dans ces cellules. Par western blot, nous avons montré que cette réduction est associée à des modifications post-traductionnelles des protéines impliquées dans la régulation du cytosquelette. Ces modifications sont la phosphorylation de la protéine tau et des neurofilaments et l’acétylation de la tubuline α.

Cette étude indique donc que la GSK-3β et la protéine p25 contrôlent négativement la croissance neuritique.

Dans la deuxième partie de notre travail, afin d’étudier la relation entre ces kinases et le transport axoplasmique, nous avons analysé dans des neurones en culture l’effet d’une augmentation d’activité de la GSK-3β et de Cdk5/p25 sur le transport des mitochondries.

Pour étudier le déplacement des mitochondries, les neurones en cultures ont été doublement transfectées avec deux plasmides : un marqueur mitochondrial combiné avec la GSK-3β ou p25. Après transfection, le mouvement des mitochondries a été enregistré grâce à la technique du time-lapse.

L’étude de la fréquence de trois comportements (mouvement antérograde, mouvement rétrograde et état stationnaire) nous a indiqué que les mitochondries sont normalement en position immobile pendant 70 % de leur temps. La surexpression de GSK-3β ou de p25 augmente la fréquence de cet état stationnaire et diminue de manière plus importante les mouvements antérogrades que rétrogrades sans affecter la vitesse des mitochondries. L’observation au microscope électronique a permis de démontrer la persistance du réseau de microtubules dans les cellules surexprimant GSK-3β ou p25.

Le transport des mitochondries est un processus actif faisant intervenir les moteurs moléculaires (kinésine et dynéine) dont le rôle est le transport d’organelles qui repose sur un réseau intact de microtubules.

Cette étude suggère donc que la GSK-3β et p25 contrôlent négativement le transport des mitochondries en agissant au niveau des moteurs moléculaires (kinésine et dynéine) plutôt qu’en détruisant le réseau de microtubules.

Dans la troisième partie de notre travail, nous nous sommes intéressés à l’expression et à la localisation dans le cortex frontal humain et dans le cortex cérébelleux de deux protéines appartenant aux moteurs moléculaires responsables des transports axoplasmiques antérograde et rétrograde : la chaîne légère de la kinésine (KLC1) et la chaîne intermédiaire de la dynéine (DIC).

Nous avons observé une diminution du niveau d’expression de la KLC1 et de la DIC dans le cortex frontal (une zone atteinte dans la MA) mais pas dans le cortex cérébelleux chez les patients atteints de la maladie d’Alzheimer par rapport à des sujets contrôles. Une diminution du niveau d’expression de la tubuline-β3 et de la synaptophysine -deux marqueurs neuronaux- a aussi été observée dans le cortex frontal mais pas dans le cortex cérébelleux. Nous avons aussi démontré une hausse de l’état de phosphorylation de la KLC1 dans un modèle cellulaire surexprimant la GSK-3β. Dans le cortex frontal dans la MA, nous avons observé une augmentation de la forme active de la GSK-3β, et une hausse de la phosphorylation de la KLC1. Cette phosphorylation accrue de la KLC1 diminue son activité de transport des organelles.

Ces anomalies de l’expression et de la phosphorylation des moteurs moléculaires pourraient jouer un rôle dans les perturbations des transports axoplasmiques dans la MA.