Résumé : Actuellement, la majorité des équipements électroniques prenant place dans nos véhicules s'interconnectent encore par des liens câblés. Or, l'établissement d'un réseau sans fil permet de remplacer ces liens existants. Afin de permettre cette connectivité et pour répondre aux exigences futures, une solution qui accepte suffisamment de débit doit être développée. Parmi les solutions actuelles possibles, l'Ultra-Large Bande est le candidat idéal. De manière générale, cette Thèse se consacre à l'étude de la propagation à l'intérieur d'une voiture. Afin d'évaluer les performances de ce type de système à l'intérieur d'un véhicule, un modèle de canal pouvant reproduire avec fidélité la propagation intra-véhiculaire est nécessaire. De par la similarité entre les environnements, le modèle de canal proposé est basé sur la théorie des chambres réverbérantes. Compte tenu des faibles dimensions de l'environnement et de la proximité des antennes par rapport aux passagers, l'idée est de réduire l'énergie absorbée par ces derniers tout en maximisant celle-ci à la position d'un récepteur visé. Parmi les solutions possibles, le retournement temporel apparait comme une technique idéale pour répondre à ces objectifs. Cette technique permet en effet de focaliser temporellement et spatialement le signal électromagnétique au niveau du récepteur. Dans cette Thèse, une évaluation des performances du RT à l'intérieure d'une voiture est proposée. Cette étude nous a amenés à porter notre attention sur les propriétés spatiales de l'énergie totale portée par un signal utilisant le retournement temporel et, de ce fait, nous proposons un nouveau formalisme de la distribution spatiale de cette énergie. / Current vehicles still use wired links to interconnect the embedded electronic equipment. However, advances in wireless technologies permit to replace these links with wireless personal area networks. To enable this connectivity and to meet the future requirements, a solution that provides sufficient data rate must be developed. One technological candidate that can be used to meet the data rate requirements is Ultra-Wide Band. This thesis investigates the ultra-wideband propagation environment in intra-vehicular environments. In order to evaluate the performances of UWB inside a vehicle, channel models that accurately reproduce the intra-vehicular propagation characteristics are required. Because of obvious similarities, the proposed model is based on reverberation chamber theory. Given the small size of the environment and the proximity of the antennas to the passengers, one goal of intra-vehicular communications is to reduce the energy absorbed by the passengers while maximizing the energy at the position of the intended receiver. Among the possible solutions, Time Reversal appears to be the ideal technique to meet this objective. Time Reversal permits to spatially and temporally focus the electromagnetic signal at the receiver. In this thesis, a performance evaluation of Time Reversal inside a car is proposed. Moreover, a model of the spatial properties of the total energy of a signal using Time Reversal is proposed.