Résumé : We analyse the regularized reduced model derived in Part 1 (Ruyer-Quil et al. 2005). Our investigation is two-fold: (i) we demonstrate that the linear stability properties of the model are in good agreement with the Orr–Sommerfeld analysis of the linearized Navier–Stokes/energy equations; (ii) we show the existence of nonlinear solutions, namely single-hump solitary pulses, for the widest possible range of parameters. We also scrutinize the influence of Reynolds, Prandtl and Marangoni numbers on the shape, speed, flow patterns and temperature distributions for the solitary waves obtained from the regularized model. The hydrodynamic and Marangoni instabilities are seen to reinforce each other in a non-trivial manner. The transport of heat by the flow has a stabilizing effect for small-amplitude waves but promotes the instability for large-amplitude waves when a recirculating zone is present. Nevertheless, in his last case, by increasing the shear in the bulk and thus the viscous dissipation, increasing the Prandtl number decreases the amplitude and speed of the waves.