Résumé : To demonstrate the ability of the lead isotope signature technique to evidence the spatial extent of an industrial Pb deposition plume at a local scale, dry deposition of lead in the urban environment of a Pb-Zn refinery was investigated, as a study case, using transient ("short-lived") isotopic signatures of the industrial source. Sampling campaigns were achieved in representative weather conditions, on an 8-h basis. Dry deposition rates measured downwind from refinery emissions (≈102-10 3μgPbm-2h-1), cross-sectionally in a 3-5km radius area around the plant, represent 10-100 times the urban background dry fallout, measured upwind, as well as fallout measured near other potential sources of anthropogenic Pb. The Pb-Zn refinery isotopic signature (approx. 1.100<206Pb/207Pb<1.135) is made identifiable, using the same set of Pb and Zn ores for 2 days before sampling and during field experiments, by agreement with the executive staff of the plant. This source signature is less radiogenic than signatures of urban background Pb aerosols (1.155<206Pb/207Pb<1.165) and minor sources of Pb aerosols (1.147<206Pb/207Pb<1.165). By a simple binary mixing model calculation, we established the extension of the industrial Pb deposition plume. Fifty to eighty percents of total lead settled by the dry deposition mode, 3-4km away from the refinery, still have an industrial origin. That represents from 40 to 80μgPbm-2h-1, in an area where the blood lead level exceeds 100μgPbl-1 for 30% of men and 12% of women living there. We demonstrate here that stable Pb isotope analysis is able to evidence the Pb dry deposition plume in stabilised aerodynamic conditions, using a short-lived source term, suggesting that this methodology is able to furnish valuable data to validate industrial Pb aerosols dispersion models, at the urban scale. © 2004 Elsevier Ltd. All rights reserved.