par Van Praag, Herman ;De Smedt, Florence ;Vu Thanh, T.
Référence European journal of soil science, 51, 2, page (245-255)
Publication Publié, 2000-06
Article révisé par les pairs
Résumé : The aim of the study was to evaluate effects of mobile and immobile water and diffusion-limited transport on the binding and release of ions in soils. The desorption and leaching of calcium in a humic layer of a densely rooted acid forest soil under a beech stand was studied in laboratory experiments by leaching soil columns with a desorption solution and recycling the leachate through the columns. Radioactive tracers were added and monitored in the leachate to evaluate desorption and leaching characteristics of the soil. Parallel experiments were conducted with chloride and calcium to determine transport and desorption parameters independently. The experimental data were then analysed with a transport model, taking into account effects of mobile and immobile soil water fractions, and in the case of calcium assuming an equilibrium Langmuir adsorption isotherm. The transport was highly dependent on the mobility of the soil water, and in particular the fraction of the soil water to which the chemical was confined as a result of ionic properties. For chloride an excluded soil water phase had to be taken into account to explain the experimental findings. Immobile or mobile water and solute transfer and transport properties were not sufficient to explain non-equilibrium effects in the adsorption reactions. Desorption curves agreed with results from batch experiments, provided the leaching experiments were done in such a way that equilibration between the soil solution and the solid matrix adsorption sites was reached, otherwise desorption was delayed and the calculated isotherms do not represent actual equilibrium adsorption-desorption conditions.