Résumé : This work focused on studying the effect of the chemical oxidation demand to sulfide ratio (COD/S) on power generation and sulfide oxidation in microbial fuel cells treating sulfide-rich wastewater containing organic contaminants. The maximum power density achieved was 20±1 W m -3 V Anode and the Coulombic yield was 20±2%. The COD/S of influent played an important role in elemental sulfur and sulfate production because of competition between acetate oxidation and element sulfur oxidation to sulfate in the anode. When the COD/S was 12.50/1, more than 74.0% of sulfide was converted into elemental sulfur after 24 hours of operation. The effect of the COD/S on power generation was negligible when the COD/S ranged between 4.85/1 and 18.53/1. After 24 hours, the COD removals were 110±6, 213±9, 375±8 and 410±10 mg l -1 when the COD/S was 4.85/1, 8.9/1, 12.5/1 and 18.53/1, respectively. The COD removal increased with the increasing COD of the influent, which fitted to the model of first-order reaction kinetics. © 2013 Copyright Taylor and Francis Group, LLC.